
IMHI uiw mmm

"

AFOSR -TR- 70- 0^8 3

QC

o

SYNCHRONIZATION OF FINITE STATE SHARED RESOURCES

Edward A Sei neide.-

DEPARTMENT
of

COMPUTER SCIENCE

D D C
»UC S 1976

EinrE

lilll

AIR FORCE OFFICE CF SCIENTIFIC RESEARCH (AFSC)
HOTIC^ OF IRAHSMIIiAL TO DDC
This xeoiir.ioul %■ ,; '/t U^j bsor r5viQ**ed and is

irovcü icr :i 3 Imaa L&üf AifK 190-13 (7b).
,■ „x'-lLu-loTi iS u..-'imi'tod.

A» D« BIIUMA
I'©oiiflical Informatioa Officer •

Carnegie-Mel Ion University
jßffitBlBtJTlON'STATEMEWt Ji

Approved lor public i«i«ü««
DUtxibutioa UaiiiBiiad

«MH

"" ■ ■ ^ I I. i. . : ,1 . i-i

SYNCHRONIZATION OF FINITE STATE SHARED RESOURCES

Edward A Schneider

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, PA 15213
March, 1976

•

Submitted to Carnegie-Mellon University in partial
fulfillment of the requirements for the degree of Doctor of
Philosophy.

This work was supported in part by \he Defense Advanced Research Projects Agency
under contract F44620-73-C-0074,vflnd in part by the National Science Foundation
under contract GJ 32259. This document has been approved for public release and
sale; its distribution is unlimited.

~- -~ ~.-.~·~=====~===

DISCLAIMER NOTICE

THIS DOCUMENT IS THE BEST

QUALITY AVAILABLE.

COPY FURNISHED CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

ABSTRACT

The problem of synchronizing a set of operations defined on a shared resource

is studied. It is assumed that the decision as to which operations may be executed at

some given time is dependent only on the sequence in which the operations have

already executed. Equivalence classes of these sequences, called states, can then be

used to define synchronization. A restriction is made such that only those resources

for which the syr.ch,.nization can be expressed using a finite number of states will be

studied. The states along with a successor function, which is defined for a

state-operation pair if the operation may start execution when the resource is in that

state, form what are called synchronization relationships.

A distinction is made between resources on which only one process may execute

an operation at a time, called serial resources, and resources on which several

processes may execute operations in parallel, called concurrent resources. To handle

concurrent resources, the states must be modif.ed so that they correspond to

equivalence classes of sequences of perilogues instead of operations. A perilogue is

either the start or the finish of the execution of some operation.

Several variations of regular expressions are presented with which the

synchronization for a shared resource might be expressed. Also, a method which can

be used to implement the synchronization relationships is given. This implementation

has a high overhead so several possible simplifications are shown. Each variation of

regular expressions and each simplification of the implementation is shown to

 • '•' ■l."Il1111'

correspond to some restricted class ot the synchronization relationships. The set of

synchronization problems which can be solved using one implementation or notation

which can't be solved using some ether implementation or notation can be found by

comparing the corresponding clessei

ill

. . ■ ■ ...

 i*l *WrifliiL Hiill'IPIKl i IIWI^IIIJIBlWWIIMlWnil 11 ■ " ■ ' '" '

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation and thanks to my advisor and

thesis committee chairman Professor A. N. Habermann for introducing path expressions

and for the many hours that he has spent discussing this work with me. I also wish to

thank the rest of my thesis committee, Professors A. K. Jones, N. Suzuki, and P.

Andrews for their constructive suggestions.

Finally, I want to thank my wife Ann and daughter Peggy for their patience and

understanding.

iv

 I . . .— ' " —~—-^ —

COf^TENTS

TITLE PAGE. '

ABSTRACT. "

ACKNOWLEDGEMENTS. iv

CONTENTS. v

Chapter I. INTRODUCTION.
BACKGROUND.
MOTIVATION.
PROBLEM TO BE STUDIED. 8

OUTLINE OF THE THESIS. 10

Chapter VI. CONCLUSION.

APPENDIX.

Chapter II. SERIAL RESOURCES. 13

FINITE STATE RESOURCES. 16

PERSISTENT SETS. 21

EQt ALENT STATES, 24

IMPLEMENTATION. 27

PR^JECTIVE AND 1NJECTIVE RESOURCES. 31
PRIORITY. ^

Chapter III. SUBCLASSES OF REGULAR EXPRESSIONS. 39
RESTRICTED REGULAR EXPRESSIONS. 41
Z EXPRESSIONS. 44

PERSISTENT SET ENTRY STATES. 47

SYNCHRONIZATION AND RESTRICTED REGULAR EXPRESSIONS. 50
RELATIONSHIP TO CONTROL STRUCTURES. 54

__
Chapter IV. ELEMENTS. B7

STATE TRANSITIONS. 58

SUBSTATES. 61

IMPLEMENTATION. 65

ASSIGNING ELEMENTS TO STATES. 69

SINGLE TRANSITION OPERATIONS. 74

BOOLEAN ELEMENT RESOURCES. 78

Chapter V. CONCURRENT RESOURCES. 83
PROLOGUES AND EPILOGUES. 84

REQUIRE AND RELEASE TRANSITIONS. 90

MULTIPLE REGULAR EXPRESSIONS. 93
PROCEDURES. 97

99

BIBLIOGRAPHY. l04

106

———————I

CHAPTER 1

INTRODUCTION

In programming systems, it is usually necessary to enforce rules regulating the

behavior of the system. Such a set of rules is known as a protection policy and the

enforcement mechanisms are known as a protection system implementing that policy.

Scope rules in programming languages and the restriction of allowing only authorized

users to access files are examples of protection. Another example occurs when one of

several cooperating processes must temporarily halt execution pending the completion

of some set of action« by the others. Such protection is referred to as

synchronization. A set of rules governing when a process must halt and when it can

continue execution is referred to as a synchronization problem.

An important use of synchronization is to control the access to resources by

cooperating sequential processes. A resource is any physical device or segment of

memory which can be referenced by the programming system. Some examples are a

data structure in a process' virtual memory, a file on a permanent storage device, and

an I/O device. Each resource has associated with it a set of operations which are used

to extract information from it, to alter information in it, or to add information to it.

In order for the processes to cooperate, it is necessary to allow them to share

resources. For instance, a message buffer must be accessible by the processes

sending messages and by the processes receiving them. To insure that the value of a

shared resource is always well defined when a process invokes one of the operations

.

INTRODUCTION

d.,m.a on It, U.U.1I, th. resourc. m.y only b. oper.M on by on. proc... .. . «m.

and th. op.r,.ions »os. .«cut. on,y in cl.in s-ooonces. W so., proc.s. tri.. to

„.cut. .n op.r..,on wh«. so», otber pr«... is .***<* on th. r.sourc. or .n

.ncorroc. soooonc. o. op.r.tions wou,d r„u,t, th.n th. proc st h.lt un.l, .hi.

cond,.ion is no iong.r tru.. Such synchroniz.tion o d r.sourc, I. th. topic

which will be explored.

BACKGROUND

The problom 0. synchroni.ing proc.ss« without usin, busy w.itin, w« «r.t

soived by aih.tr. with P and V synchroni.ation primitives [D681 Sin» then a.

other synchronization primitive sets have been proposed to solve problems which

couldn't be solved e.siiy with any o. th. e.istin, primitiv«, Th... include allowing P

or V to be executed simultaneously on sever., semaphores (P-V multiple) [P7H

(introduced to solve the cig.r.tt. «moH.r. problem), .llowlng . sem.phor, to b.

ceremented or decremented by . value ,re.ter th.n on. (P-V chunh) ^72]

«„troduced to solve the hounded reader-writer problem), and s.p.r.tlng th. ...tin,

and th. decrementing 0, a semaphor. Into two oper.tlons «*-**** [W72]

(introduced to solve the general r..d.r-writ« problem).

,„ addition, several methods have been proposed to allow synchroniz.tlon to be

expressed in a more -structured- manner. These methods .r. meant to be used In .

high level language to control access to shared resources. A ogy can be mad.

between th. relation ot these high level methods to .h. prlmiti d the reftlon o.

high level programming language control structure. .0 ...embly l.ngu.g.. Th. high

I
; " ■ "

.—-——. '— ■ ■ ■

on.

ions

INTRODUCTION
3

'eve, synchro„i..,l„n m.,h()ds pr0„,de . s|rut,ured me8ns ^ ^^ ^^

occU.r,„g sy„chr0„i2a„on, lhu. helpmg ,0 impr()ve un((er5|and8bi|i|y arid ^^^^^

.us, .. ,F . THEN . asE ,„, WH|. E . ^ ^^^^ provide a M^M(^ |o

e«Pre,s fre^Uy us.d contro, 0„h5 A comp„er c§n ^^ ^ ^^ ^ ^^^ ^

synchroni.Mio. in (.rn. of prlr .ives ,„., .. „. contro| s|ructürts ^^ ^^ ^

terms of test and jump instructions.

The first of Ih«. methods is "reg.ons- proposed by Brinch Hensen [BH72]. A

region is . sfetemen, „p. th.t ocja,ed w|,h some sh8red ^^ For ^ ^

,h 50U^",■ 0nly 0"e "^ - ' >»» can .„cut. ,„ associated regi

furthermore, shared resources can on,y b. accessed in these regions. Thus, reg

provide structured critic., s.Cions and a„ow a compiier to enforce mu,u.„y e.Cuaiv.

eccess of shared resources. Sequencing is sfill handled using primitives.

It has long been recogniEed ,„., ^„^ ^^ ^ ^^ ^ ^

onlv be executed in a restricted manner Thus, procedures ha« on,y one .„t,y point

and a jump m.y not be made into the middle of one from outside of if, Ukewl.,,

primitive data types such as integers, reals, booleans, and characters may only b.

operated on by certain operations. For instance, booleans may not 0. added. This

Idea should be extended to „ore compiex resources. They shouid only b. accessible

through a ,ew operations which completely define the behavior of the resource.

Allowing a resource to be accessed only by so™ fixed se, of operations has

sever,, advantages. The first is that at the point i, is used, all ,„., needs to be known

about the resource is the ef.ec, of each operation which can be used. How i, is

Impiemented is unimportant. For instance, a s.acK is defined by the effects of Ih.

 ■'■ ° ' -'"

INTf?ODUCTI0N 4

operations push an item, pop an item, and test for emptiness on the values of the

other operations. Whether it is implemented using an array, a linked list, or by some

other means is unimportant. Users perceive only the three operations.

Next, if the resource may oniy be accessed through several operations rather

than in an arbitrary manner, it is more likely that the value of the resource will always

be meaningful. Finally, a verification that the resource always is accessed correctly

can be confined to several operations and can ignore the rest of the code of the

programs which use the resource.

A convenient means to insure that a resource can only be accessed through a

fixed set of operations is to include the implementation details and the operations in a

module. The only names defined in the modyle which can be used outside of it are

those of the operations. Concentrating the implementation and access details of a

resource in a module also has the advantage »hat if the implementation ir changed in

some way, all of the places in the access algorithms that need modification are

localized and are therefore easily found. There is no need to search trough ell of the

programs that use the resource to make these changes. Flon [F75] discusses such

modules in more detail and gives some examples.

The module is also the best place to define in which sequences the operations of

a resource may execute. The synchronization can then be considered as part of each

operation and the operations can be used without concern for synchronization. Also,

as with the implementation, it is easier to make modifications and to verify correctness.

The last two synchronization methods to be described are meant to be used in just
*

this way.

■■'■■" "■■".-■" ' ••— M

INTRODUCTION 5

Hoare [Ho74] p'oposed the concept of a "monitor" for synchronization. A

monitor is a collection of data, procedures which operate on this data, and

initializations, The data may only be accessed by these procedures and only on©

process at a time can do so. Thus, a monitor may be thought of as providing a critical

section around the data and procedures of a shared resource. As with regions,

sequencing still must be expressed using primitives.

Finally, Campbell and Habermann [CHB74] have proposed path expressions as a

means of synchronizing a set of procedures operating on a collection of data. A path

expression consists of an expression R which contains each operation name once and

which is enclosed in a PATH - END pair. R may be a single operation name, it may take

the form RVR" meaning that either some sequence of operations expressed by R' or

one expressed by R" may occur, or it may take the form R'jR" meaning that some

sequence of operations expressed by R' should be followed by one expressed by R"

where R' and R" are of the same form as R. The path expression, once completed, may

then be repeated. Thus,

PATH f ; (g+h) END

means that f should be executed first, then g or h, and then this sequence starts over

again. •

MOTIVATION

To be able to decide how useful a given method is for some application. It must

be known which of the desired synchronization problems can be solved using that

INTRODUCTION 6

mathod. Therefore, when i synchronization method is propoeed, the cl»«8 of problems

which can be solved using it should also be given, Lipton [L73] has compared the

various primitives and for each one has characterized some of the problems which

can't be solved using that primitive system. The complete set of problems which each

synchronization method can or can't solve hasn't been shown, though.

A strong meaning of "solve" must be used here since any synchronization

primitive may be implemented using critical sections and letting a process block itself

or wake up a blocked process. The following is an example of how this can be done:

CRITICAL SECTION BEGIN
test each blocked process
IF process-j may now continue THEN WAKEUP(process-j) FI;
IF this process can't continue THEN indicate it is blocked

CRITICAL SECTION END
BLXK

ELSE CRITICAL SECTION END
FI

The BLOCK occurs outside of the critical section in order t' allow other processes to

enter to execute WAKEUP. One way to find each blocked process is by Keeping a list

of them. Then, to indicate that a process is blocked, it is put on this list. Notice that ■

process which wants to wake another might be stopped trying to enter the critical

section if another process is already in it. Such a delay wouldn't occur if a primitive

replaced the critical section. Therefore, by solve it will be meant that there aren't any

f xtra places where a process may become blocked such as at the start of the criticel

section above.

In order to show that a group of processes cooperate correctly, it must be

possible to understand how they are synchronized. Also, the consequences of any

INTRODUCTION

modificatifx -. to the synchroni/dtion must be understandable. This helps insure that

what is actually programmed is what was desired, It also makes it easier for someone

else to maKe changes. As the difficulty in understanding increases, the possibility of

an error occurring and the difficulty in detecting such errors also increar? Finally,

certain deadlock possibilities should be detected. These possibijities include a process

that waits on a semaphore which has an initial value of zero and which no process will

ever increment. Another example is when a process uses a critical section nested in

another and a second process uses the second critical section nested in the first.

The problem with synchronization primitives is that they, and therefore any

changes, may be scattered throughout the code executed by the various processes.

Furthermore, no structure is imposed on their use. Regions and monitors provide

higher level structures for writing critical sections, but sequencing must still be

performed using synchronization primitives. These primitives may be scattered

throughout a monitor or region. Only with path expressions I* the desired sequencing

clear.

Another problem with regions and monitors is their strict enforcement of mutual

exclusion. In the reader-writer problem where the read operation may be performed

simultaneously by an arbitrary number of readers, this operation can't be part of any

region or monitor. This means that the data structure on which the read operation is

defined can't be part of any monitor since otherwise any operation which can execute

on it mus1 also be part of that monitor. The result is that operations "startread" and

"endread" must be introduced just to provide synchronization. Path expressions solve

this problem with the introduction of a {-} construction. This notation has the meaning

INTRODUCTION
8

that an arbitrary number of processes na/ execute . * operations within the bracKets

simultaneously. Thus,

PATH write+{re8d) END

means that either one process may write the data structure or several processes mey

simultaneously read it. The brackets, however, don't allow restricting the numbur of

readers to some finite bound.

PROBLEM TO BE STUDIED

It is the purpose of this research to study synchronifetion in terms of ti>e

allowable sequences of operations on a shared resource. Thus, it will be assumed that

each resource may only be accessed through a fixed set of operations. Since state

machines have been widely used to study sequences of symbols [HU69], it will be

convenient to use them to represent these sequences. Each operation defined on the

resource will correspond to one or more state changes. In order to simplify the study

somewhat, only that synchronization which can be described In terms of a finite

number of states will actually be discussed.

The operations which can be used on a shared resource are executed by the

various processes of the programming system. A process can be considered to be ■

sequence of calls on the operations of the shared resources possibly interspersed with

calls on the operations of resources which can only be accessed by that process.

There is also some control which regulates the sequence of operation calls.

INTRODUCTION 9

A distinction will be made between those resources on which operations can be

executed in parallel and those on which operations must be executed one at a time. In

order to handle parallel execution, each operation must consist of two state changes,

one at the beginning of the operation and one at the end.

Several subclasses of finite state machines will be introduced by restricting the

admissible state changes. Since each synchronization problem is represented by a

state machine, each of these subclasses limits the set of problems which can be

expressed. Therefore, each restriction of the finite state machines also defines a class

of synchronization. The task of showing which problems a synchronization system

solves thus corresponds to presenting the appropriate restriction of the state

machines.

The main criteron which is used to restrict the state changes is the manner in

which the resulting synchronization class can be implemented. If for some

implementation there is no corresponding class, then every class containing the set of

synchronization problems which could be implemented with that implementation which

contains this set must also contain some synchronization problems which can't be. .

Thus, a more complex implementation is needed for every such cits«. Howsvar, if this

set contains all of the synchronization problems of interest, thon he simpler

implementation would have been si/fficient.

Ease of implementation shouldn't be the only factor used in selecting the class of

synchronization to provide in a language for parallel programming. In order to express

synchronization outside of the class which is provided, a user must implement a larger

class in terms of the existing class. The resulting impleme-tation must be more

INTRODUCTION l0

complex than if the larger class h*' been provided inK'.ally, Furthermore, the user has

an extra opportunity for a programming error.

In order for the designer of a language for parallel programming to b« ab'e to

use one of these classes, it must be possible to express the «ynchronUtatlon of that

class in so .e notation. As explained above, path expressions provide a means for

expressing synchronization which is easy to understand relative to the other methods.

Unfortunately, they can only be used for a simple class of problems, Regular

expressions of the operation names, a generalization of path expressions, can be used

to describe any synchronization which can be expressed with a finite state machine.

This suggests that some restriction to regular expressions would be suitable for each

class. Therefore, several modifications to regular expressions will be Introduced and

compared with the classes.

Even though regular expressions are used in this research, there might exist

other notational systems which are equally suitable. Regular expressions were

selected because of their correspondence tp finite automa'-« and because they are

easy to use and understand for simple synchronization. If some other notation is used,

the class of synchronization which can be expressed with it should be shown.

OUTLINE OF THE THESIS

In chapter IIf the finite state model for resources on which only one operation at

a time may execute Is developed. This includes some definitions and basic results as

well as a discussion of how these resources may be implemented. Where relevant,

.... ...

INTRODUCTION

11

"P"K,0M '" ^ '0 C0~ " ' ^ - " .> P.» wlth . s,mple

;mplemenfation. This riK„n t. »i.
ms result is then extended to orocrr«««,!«- i

10 programming lenguage control
firrnrtiir«»» structures.

be """ e,emen,S' "- •" H - .o more

"•• "».d to simpli,y ,h. impl,m,„t,ti0n 0(|h, •
mese parallel resources. Chapter VI

summarizes what hac k. L
has been shown and points to areas w^re ,ut ch „

needed

^ "^ 0 " "" ^ * chons which are present., .r.
related to each other.

SERIAL RESOURCES

finite state

injective

single transition

boolean element

simple serial

CONCURRENT RESOURCES

finite state
 ■ ■ ■ t

relationally parallel

boolean element

CHAPTER U

SERIAL RESOURCES

»n K« studied calB with shared resources on
The first type of synchronizat.on to be stud.ed

. m-v execute operations simultaneously,
which not more than one process may execute ope

.h.red resource on which only one proces« at
DofinMom \ wrtel r^ourr« ia a shared

a time may execute.

It .^ b. n...— —•-^•,o',7:0;;;.::.

during the execution of f.

ltm.y.,...th.c ..— »P..—-—

sequences.

j tn n«s messages between processes.

E*ampl. 2.U Consider »^»•^^^W ^"^ ^ "^^.! The operations which are ^fmed a e .ns ^ (^^ wM8^.
Lsage" If -ore than o- o^8ho may e ^ ^ ^ ^^

could be inserted l^b,ed *0g^r ^ Reived exactly once, then the
reni0ved. If each ^«s^ ;f ^ r

alternate .rwise. a message
execution of remove "^ '^^ ^M be twice.
might be overwritten and tost or else mS

K," ni«tion Syrern is used to guarantee this
u i8 the responsibility . whatever synchronization sy

♦ c«mi*nce of operations doesn l occur. ..ri.,...cu.ion.nd ..■.„•"-. th..."lncorr«..MU.n»o

„,„„e. In which th. op.'«tion« -tiA* <'

acceplabl,.,f.,.M.2..-o^soth.1 ..-V- —

SERIAL RESOURCES 14

once or not at all, then all that matters is that insert and remove don't overlap In time.

The order in which they execute is no longer important. Such synchronization is

usually handled by writing the operations as critical sections.

One way to express the allowable sequences of operations is to write them out

explicitly. Alternatively, relationships of the form "operation f may be executed on the

shared resource if the order in which operations have been executed form sequence

oc" may be used. However, if there is no restriction on the number of time? that an

operation may execute, these sequences may be arbitrarily long, Therefore, an infinite

number of these relationships would be necessary. Usually, though, part of the

previous history is unimportant.

Examph 2.2: Returning to the message buffer of example 2.1, the desired
sequencing is that the execution of insert and remove alternate.
Therefore, when something is removed from the buffer, it matters only
that the most recent operation on the buffer was insert and when
something is inserted, it matters only that the most recent operation was
remove.

Dofiniiion: The «/otn of a shared resource is that port of the succession of
operations which have executed on the resource and that is necessary to
determine which operations may execute in the future.

In what follows, the symbols p and q will usually be used to represent the state.

The relationships now take the form "operation f may be executed on the shared

resource if its state is p wi^h the result being state q".

Dafinitiom The tynchronization rdationshipi for a shared resource consist of a
list of the states and for each, a list of the operations which may execute
when the resource is in that state and the state which results.

SERIAL RESOURCES 15

The resulting state q is created by adding f to the execution sequence represented by

p. Of course, some of this history lay no longer be important and will be omitted from

state q.

The following notation will be useful when dealing with these relationships.

Definition: If p is a state and f an operation, then the successor function, S(p,f),
has the value q if operation f may execute when the resource state Is p
with the resulting state being q. If f can't execute when the state of the
resource is p, then S<p,f) is undefined, If S(p.f) '8 defined, then (p,f) is en
arc of the resource

Example 2.3: For the message buffer, example 2.2 shows that there are two
states lastinsert and lastremov© with lastremove being the initial state,
S(lastremove,insert) » lastinsert, and Sdastinsert/emove) - lastremove.
S(lastremove,remove) and Sdastmse^insert) are undefined. The arcs are
(lastremove.insert) and (lastinsert.remove).

Thus, the successor function S is a partial function which is defined for those states

and operations such that the operation may execute when the resource is in that $tate.

Whenever S(p,f) is defined, it will be said tltat operation f may be applied at state p.

It will often be desirable to detern ine if a sequence of operations, rather than a

single operation, may execute on a shared resource.

Definition: An arc pregrosnion from a state OQ to a state qn is. a string of arcs
(q0,f 1)..,{qn_1,fn) such that (Vi, ISiSn) S(qj.1,fj) i qj.

Thus, an arc progression specifies a possible ordering for the execution of the

operations fj. Note that there is no restriction requiring that the arcs be distinct. It

might be true that q^ - qij and fj - fj for some i and j, 0<i<j<n, When this happens,

it must also be true that qj ■ q:. A special case is when an arc progression is circular.

Definition: A cycle is a non-empty arc progression from a state q to q.

■ I

SERIAL RESOURCES 16

In example 2.3, the arc progression (lastremove,ins8rt)(lastinsert,remove) is a cycle.

Critical sections are an even simpler case of cycles. Since any sequence of

operations is acceptable, none of the previous history is important. Therefore, a single

state is sufficient and each operation must start and end at this state. Each arc

progression, including any of length one, is from this single state to itself and is a

cycle.

FINITE STATE RESOURCES

As states have been described so far, it is impossible to deal with an infinite

number of them. The successor function is defined by listing the value for each arc of

the resource. If the number of states is infinite, then so is the number of arcs. Thus,

a natural restriction will be to permit onjy a finite number of states for n shared

resource.

Definition: A resource is finite »täte if the number of states, and therefore the
domain of the successor function, is finite.

Unfortunately, there are serial resources with an infinite number of states, Consider a

stack of unbounded size on which the operations PUSH and POP are defined The

desired synchronization is that only one process at a time can execute one of these

operations and that at any given time PUSH must have been executed at least as many

times as POP. The information represented by the state must be how many more times

PUSH has executed than POP. Since this number may be arbitrarily large, there must

be an infinite number of states.

SERIAL RESOURCES 17

Usually, such resources miy be studied with a finite state system by putting •

limit on the memory size used by such « resource or, if the resource isn't serial, then

on the number of processes w/hich can use the resource simultaneously. Thus, the size

of the stack in the above example could be bounded. Such a restriction would occur in

practice anyway. A mechanism will be developed in chapter IV which will enable the

handling of some resources with an infinite number of states and an indication of how

this can be done will be given in chapter VI. Other than in these places, however, such

resources will be outside the range of the research reported here.

In order to help study finite state resources, the concept of a finite automaton

[HU69, page 26] is needed. A finite automaton is a system (K,l,i,qQtF) where K is a

nonempty, finite set of states, I is a finite input alphabet, I is a mapping of (K,I) into

K, q0 < K is the initial state, and F c K is the set of final states, The system is initially

in state QQ and as each successive character fj of an input string is read, the

automaton enters state qj - «(qj.^fj). It qn < E, then the string fj...^ is accepted.

Otherwise, it is rejected.

While the synchronization relationships for a finite state resource resemble a

finite automaton, there «re several differences. These differences are based on how

each is used. A finite automaton Is used to indicate whether or not a given string is

correct. Thus it has final states. Also, regardless of what state the automaton is in,

any input is possible and therefore a resulting state must be defined. However, if an

input insures that the string will be rejected, f must be impossible to reach a final

state from the resulting state.

Definition: A state p <; K is dead if (Vx (I*) «(p,x) isn't a final state.

SERIAL RESOURCES 18

In the definition, I* is the set of all strings of length 0 or more of symbols from I.

The function B is extended to I* as follows. If x is the siring of length 0, then l(p,x) -

p. If x - x's where x' (I* and s (I then 8(p,x) - aWp.x^s).

The easiest way to find Kie dead states is to first find the set L of states which

aren't dead. Clearly, any state o. r is in L Therefore, L is initiaiized with F. Any

state q such that (3s) «(q.s) < L is also in L This procedure is then repeated until

there are no more such states q. Any states which aren't in L at this point are detid.

The synchronization relationships, on the other hand, are used to guarantee that

only correct strings are input. Any input which would Insure that th'i string is

incorrect is delayed until this condition no longer holds. Thus, not every input Is

possible from.any given state and in such cases a resulting state is not defined. This

means that dead states aren't needed, Finally, usually an infinite string will be input so

the idea of a final state is meaningless.

Subject to these restrictions, the following result is presented,

Theorem 2.4: A serial resource R is finite state iff the synchronization
relationships and some finite automaton (K,I,6,qo.F) represent the same
acceptable sequences of symbols.

Proof: For each state p of R, let there be a state p' (F and for each

operation f of R let there be a symbol s « I. In addition to the states of

F, let there be another state in K which is dead. Since the number of

states and operations of R are finite, so are the number of states and the

input alphabet of the finite automaton. Define a(q,s) as follow«. If S(p,f) is

defined, then «(p'.s) is the state of F corresponding to Slp.f). Otherwise,

SERIAL RESOURCES 19

8(p',s) is the dead state. Th« construction is completed by letting the

initial state of K be the state corresponding to the initial state of R. A set

of synchronization relationships corresponding to a finite automaton may

be created by reversing this process.

This correspondence between the synchronization relationships for finite state serial

resources and finite automata can be used to apply results from automata theory. Two

elementary results are particularly important.

There is a class of expressions, known as regular expressions, which have been

shown to represent the same c!ac: of strings from an alphabet as can be recognized

by finite automata [HU69]. These expressions may be described recursively as follows

A single character from the alphabet is a regular expression. So are constructs of the

form RR', R+R', and R* where R and R' are alco regular expressions. RR' means a string

represented by R followed by a string represented by R1, R+R' means either a string

represented by R or a string represented by R'. R* represents the infinitely long

expression «+R+RR+RRR+.., where (is the empty string. The following result can now

be given.

Corollary 2.5: A serial resource is finite state iff the permissible sequences of
operations or it can be expressed using a regular expression.

For example, the synchronization for the message buffer of example 2.3 can be

expressed with the regular expression (insert remove)*.

Using e regular expression rather than the synchronization relationships to

specify synchronization has several advantages. First, the system designer no longer

SERIAL RESOURCES 20

needs to worry about states. Second and more important, it is easier to understand

which are the allowable sequences of operations.

The unimportance of final e'.ateo has an effect on the regular expressions which

can be used to specify synchronization. The expressions (f*g) and (13) both

indicate an arbitrary interleaving of the execution of the operations V and g. The

difference is that in the first expression, the state won't be final if the last operation

to execute was an f. In the second, though, there is a single state which Is also a final

state. For use in synchronization, since final states are unimportant, these expressions

are equivalent.
•

The successor fur-tion as described is determinstic. By this is meant that for

each element of the domain either the result is unique or else '1 is undefined. If the

successor function were nondeterministic, there would be more than one possible

result for some argument. A state would be chosen at random for which there might

be no processes waiting. However, processes could be waiting for anothar possible

resulting state. These procesres would then continue to wait even though it would be

permissible to allow one to run.

It might be worth :onsidering a nondeterministic successor function if some

synchronization can be described with a finite number of states that would require an

infinite number if the successor function is deterministic. The following resiflV fron

automata theory shews that there are no such resources.

Corollary 2.6: If a serial resource is finite state, then thy allowable sequences
of operations on it can be expressed using a deterministic set of
synchronization relationships.

SERIAL RESOURCES 2l

If the successor function S is nondeterministic, then a set of synchronization

relationships with a deterministic successor function S' which expresses t^.e same

allowable sequences of operations can be constructed as follows [HU59]. For each

nonempty element of the power set of states {p^..,pn), create a new state q. Assume

that for operation f S(p1,f)U...uS(pn,f) - T where T is a set of states. If T is nonempty,

then there rrilist be some new state q' which corresponds to In this case, let

S'(q,f) - q'. !' T is the empty set, then f can't be applied at q and SXq.f) is undefined.

Thd new initial state qQ is the state which corresponds to {p0} where p0 was the

original initial state. The synchronization relationships can be simplified by removing

every state to which there is no arc progression from qQ.

PERSISTENT SETS

For programs consisting of several parallel processes which may r."-, for an

indefinite period of time, such as an operating system, some of the operations defined

on each resource must be able to be executed arbitrarily many times. Otherwise, after

an operation has been used the maximum number of times, if a process tries to

execute the operation, then the process will wait forever and will be deadlocked.

Furthermore, when no operations will again be allowed to execute, it will be Impossible

tc access the resource. Thus, there must be some set of operations such that for each

there will always be some point in the future when it can be used to operate on the

resource. In most circumstances, the only exceptions are initialization operations. For

example, an operating system might provide an operation which is called by user

processes to reserve a tape drive. If the tape drive resource may enter « state in

■

SERIAL RESOURCES 22

which the reserve operation may never again execute, then any user trying to reserve

a tape drive will become deadlocked.

Definition. An operation on a shared resource is pormanont if there must
always be a possibility that it can execute sometime in the future.

One way fo specify that a set of operations can repeatedly be executed is to include

them in a cycle.

Dafinition: A pcrtittem «01 is a set of states P such that (Vp < P) (Vf which can
be appliec at P) S{p)f) i P and (Vp.q i P) there is an arc progression from
p to q (and also one from q to p). An operation f is an auxiliary of the
persistent set if (3p (P) f may be applied at p.

Another way to describe a persistent set is that it is a smallest nonempty set of states

which is closed under the successor function.

In example 2.3, {lastremove,lastinsert} forms a persistent set with auxiliary

operations insert and remove. If this example is extended by adding a new initial state

start and a new operation initbuf such that S(start,initbuf) - lastremove, then start

isn't a member of the persistent set and initbuf isn't an auxiliary of it. If a resource

only has one state as in the case where every sequence of operations is acceptable,

the executionu)f any operation on the resource must result in that state. Therefore, it

forms a persistent set and each operation is an auxiliary.

It should be noted that there may be more than one persistent set. Consider a

serial resource with permanent operations f and g such that different sequences are

allowed depending on whether f executes first or g does. For example, assume there

are five states with qs being the initial state an .(qs.f) • S(q,f) - S(q,,f) - q, S(q,g) -

q', S(qs,g) - S(p,,g) - p, and S(p,f) - p*.

■ ■ -.■..■■.■■... .

SERIAL RESOURCES 23

"♦q'

-*p'

J

Then, {q,q'} and {p(p') i re each persistent sets.

If the state of a resource is'in a persistent set, then it is easily seen that each

of the auxiliaries may be executed an arbitrarily many times and that any other

operations will never again be allowed io execute. Therefore, each permanent

operation must be an auxiliary of every persistent set. To show that each finite state

resource must have a persistent set, the following theorem is presented.

Lomrrm 2.7: If f is a permanent operation on a resource R, then (Vp) (3q) there
is an arc progression from p to q and f may be applied at q where p and
q are states of R.

Proof: Otherwise, if the state ever became p, operation f would never be

able to execute again.

Theorem 2.8: If a resource R is finite state and f is a permanent operation on R,
then (Vp) Oqfl') S(q,f) - q1, there is an arc progression from p to q, and
(Vq") if there is an arc progression from q' to q", then there is an arc
progression from q" to q.

^q j ^ ->q

Proof: By lemma 2.7, (3qQ> such that there is an arc progression u from

 -..■-..^.■.v. -r.

SERIAL RESOURCES 24

p to q0 and f can be applied at q0. Let S(q0,f) = PQ'. If for every state

q" such that there is an arc progression from qg' to q" there is an «re

progression from q" to qQ, then the proof is done. Otherwise, there Is a

state qo" and an arc progression ß from qo' to qQ1' such that there Is no

arc progression from qQ1' to qQ. By lemma 2.7, there are states q^ «nd

qj' such that S(q1,f) ■ qf and there is an arc progression ß' from qQ*' to

qj. Note that <*(qQ,f)flß" is an arc progression from p to qj. This

procedure may then be repeated. Since for j < i there is an arc

progression from qi" to q|, if there Is an arc progression from qj' to qj

then there would be an arc progression from q:" to qj, thus contradicting

the assumption. Therefore, qj t qj+1 and since there are only • finite

number of states, this process must eventually terminate.

This theorem specifies a condition which must hold for the synchronization

relationships. For each permanent operation, it must always be possible to enter some

persistent set of which that operation is an auxiliary. Thus, it must also always be

possible to enter some persistent ST* of which all the permanent operations are

auxiliaries. If this condition doesn't hold, a deadlock can occur when some process ^

tries to execute a permanent operation which will never again be allowed to execute.

Corollary 2.9: If a resource has at least one permanent operation, then (Vq) (3f)
f can be applied at q. *

EQUIVALENT STATES

It is sometimes possible to reduce the number of states of a serial resource

without changing the allowable sequences of operations.

mmmmmtoumim m , wiipmiiiiilipiiwi ,

SERIAL RESOURCES 25

Example 2.10: Let the synchronization for « shared resource with operations f
and g be expressed by the regular expression
(g+f(g<f f f)*g)*(g f f g+f 0)*. The corresponding synchronization
relationships have states pi, p2, p3, ql, q2, and q3 such that S(pllg) -
S(ql.g) - S(p3(f) - pi, S(q2,g) - S(pl,f) - p2, S(p2,f) - p3, S(q3,f) - ql,
S(p2,g) - S(ql,f) - q2, and S(q2,f) - q3.

The same sequences of operations may be expressed with the regular
expression (g.f g*f f)* which corresponds to the synchronization
relationships with states rl, r2I and r3 such that S(rl,g) - S(r3,f) - rl,
S(r2,g) - S(rl,f) - r2(and S(r2,f) - r3.

rl<

r2

f

-»>r3

Definition: States p and q are «quiwdent if for every arc progression
(p,f!).„(?„.^ff,) there is «n arc progression (qi^)..^-!^) «nd vice
versa.

A trivial example of equivalent states p and q is when (Vf) S(p,f) " S(q,f). If a is an

arc progression from S(p,f), then (p,f)o£ and (q.f)^ are both arc progressions.

A necessary condition for a set of states to be equivalent to each other is that

the same operations must be able to be applied at each of these states.

Definition-. States p and q of a serial resource are »im'lar if (Vf) f may be
applied at p iff it may be applied at q.

- ■■■MMliWMl

SERIAL RESOURCES 26

If states p and q are similar and if whenever there are arc progressions

(p.^UPn.i.f,,) and (q1f1),..(qn.1,fn) the resulting states pn and qn are similar, then p

and q are also equivalent. This can be shown inductively on the length of the ar:

progressions. Since p and q are similar, there is an arc (p,f) iff there is also an arc

(q,f). Assume that for n there is an arc progression (p.f iUpn.i,fn) M there is en arc

progression (q,f! Uqn. j,fn). But the resulting states pn and qn are similar so there is

an arc progression (p.^i)...(?„-i,fnKpn,fn+l) iff WlUq^l^nHi'Vl) ** a,6,> an ,rc

progression. In addition, if p and q are equivalent and (p.f lUPn-lV and

(q,f l) ..(qn_l,fn) are arc progressions, then (Vf) f can be applied at pn iff it can also be

applied at qn and hence pn and qn are similar. Thus, states p and q are equivalent Iff

for any sequence of operations the corresponding arc progressions 06 from p to some

state p' and ft from q to some state q' have the property that p' and q' are similar.

To determine which states are equivalent, the set of states is first partitioned

into sets of similar states. Next, taking each set of the partition which has more than

one state, two states within the set are related if each operation which can execute

from those states results in the same set of the partition. If the operations in the set

aren't all related with each other, then the set is divided by the relation. This

procedure continues until no further divisions are possible. States which remain in the

same set of the partition are equivalent and can be combined,

Returning to example 2.10, the states are first partitioned as rO - {pl,p2fll,q2}

and r3 - {p3,q3} since both f and g may execute when the resource is in any state

from rO but only f may execute when it is in a state from r3. Looking at rO, f taken pi

and ql into rO and p2 and q2 into r3 and g takes all four states into rO. Thus, rO must

SERIAL RESOURCES 27

be divided into rl - {pl.ql} and r2 - [pZ^Z). Now f takes pi »nd ql into r2, p2 and

q2 into r3, and p3 and q3 into rl and g takes pi and ql into rl and p2 and q2 into r2.

No further divisions are possible, so the new states are rl, r2, end r3 with S(rl,g) -

S(r3,f) - rl, S(r2,g) - S(rl,f) - r2, and S(r2,f) - r3.

This algorithm to find equivalent states is essentially the same as that presented

by Aho and Ullman [AU72, page 124] to reduce finite automata. It was necessary to

modify it slightly here, though, since there are no final states in synchronization

relationships and since not every operation can be applied at each state. This was

done by using whether or not an operation could be applied at a state rather than

whether or not the result was a final state to divide the sets of the partition. Since

this algorithm can be used to reduce the number of states, it will be assumed from now .

on that it has been applied and that the number of states is minimal.

IMPLEMENTATION

In order for a description of the allowable sequences of operations on a

resource based on the synchronization retat'jnships to be a useful tool which can be

included in a high level programming language, it must be possible to implement the

relationships. A variable is used to hold the current state. Each operation contains a

list of those states for which it can be applied. When a process tries to execute the

operation, this list is compared with the state variable. If there is a match, the process

continues by executing the operation. Otherwise, it must wai*. For each operation,

enough storage is needed to contain the values of the states for which the operation

can be applied.

«■niw—, ■

SERIAL RESOURCES 28

When the process starts execution, it must stora the value of the state variable.

It needs this value in order to calculate a new state at the completion of the operation.

During execution, the state variable must be set to be the null state. This is a state at

which no operation can be applied, It is used to insure that only one process at c time

may execute on the resource. Thus, any attempt by a process to execute an operation

on the resource while the state variable is null must fail. After execution has finished

and the new state has been calculated, a search of the waiting processes is made to

see if any is attempting to execute an operation which can be applied at this state. If

there are any, one is selected to proceed and the state is saved, Otherwise, the state

variable is set to be this new state.

A list of the processes waiting to execute on a resource is maintained so that

whenever some process finishes, these can be checked, The list is ordered either by a

FCFS scheme or else according to process priority. When an operation completes

execution, each process in turn is checked to see if the operation It is attempting to

execute may be applied at the new state. The search terminates either wK^n one *uch

process is found or else when the list is exhausted.

One way in which the state Which results from the execution of an operation can

be computed is with a table lookup. Associated with each entry in the list of «tates at

which an operation can be applied is the resulting state. Such a scheme requires room

to store a resulting state for each state at which the operation can be applied.

Another possibility is to number the states in such a manner that for each operation

there is some function to calculate the new state. However, there is no guarantee that

such functions, if they can be found, will execute arty faster than the «eerch.

. .

 ■IMIII II I' I i

SERIAL RESOURCES 29

An alternative to the state variable is to use a boolean variable for each state.

The boolean associated with the current state ha? the value TRUE and the rest have

the value FALSE. The null state occurs when »II of these variables are FALSE. This

implementation can be made more efficiert if each boolean is stored as a single bit.

The state is then represented as a string of bits. For each operation, the list of states

at which it can be applied can also be stored as a string of bits. The comparison

between this list and the current state can be performed by ANOing the two bit

strings. If the result is zero, the process muot wait. A list still must be searched at

the conclusion of execution in order to find the next state. However, this search will

only be made once for each execution of the operation. Any checks which are made to

see if the operation can b« applied to the current state which fell won't result In a

search.

A list of the processes waiting to execute on a resource is ma ntained so that

whenever some process finishes, these can be checked. The list is ordered either by a

FCFS scheme or else according to process priority. When an operation completes

execution, each process in turn is checked to see if the operatton it is attempting to

execute may be applied at the new state. The search terminates either when one such

process is found or else when the list is exhausted.

A modification to the waiting list is to associate a waiting list with each set of

states for which some operation may be applied. Each operitton will be associated

with exactly one of these lists. The lists are ordered by a priority scheme as before.

Now, though, the processes on top of each list are the only ones eligible to execute.

There is no need to check any of the others. At the completion Of execution each list

SERIAL RESOURCES 30

cor respohding to some set of states containing the new state must be checked for

waiting processes. Any process on one of these waiting lists will be able to execute.

There is no need to check the list of states at which the operation it is attempting to

execute can be applied. If there are any processes on these lists, one is chosen to

run. In the FCFS scheme, the value of the system clock when each of the processes is

put on a waiting list must be saved. This time is then used to make the selection when

more than one list is checked.

Example 2 11: Let a serial resource have states p, q, and q' and operations f, g,
and h such that S(p,h) - ^q.h) - Stq'.f) - P, S(p,f) - q, and S(p*) -

Sfq'.g) - q'.

Waiting

{P.q'}
call(f)
call(g)
call(g)
call(f)

1 Ictc

V

h

J^ ..

g

f
~Xt7)

{p,q}
call(h)
call(h)

An implfcmentation consisting of a state variable and several waiting lists will be used.

Processes which become blocked while attempting to execute the operations f and g

will be put on the same watting list since each of these operations may be applied at

the set of states {p.q'}. There will also be a waiting list for processes attempting to

execute h. In the diagram above, a process waiting to execute operation f is

represented by the notation "calKf)". When a process tries to execute t, the state

variable is checked to see if it equals either p or q'. If it does. Its value Is saved, it Is

set to the null'state, and the process executes f. Otherwise, the process will be put on

the waiting list for f and g. When execution completes, if the saved state is p then the

new state is q and the waiting list for h is checked. If there are any processes on it,

SERIAL RESOURCES 31

state q is saved and one of these processes becomes unblocked and may continue

execution. Otherwise, the state variable is set to be q. Likew'se, if the saved state is

q', then the new state is p and the waiting lists for f :;nd g and for h are checked. If

they aren't both empty, a process is chosen end state p is saved. Otherwise, the state

variable is set to be p. Operations g and h ere controlled similarly.

PROJECTIVE AND 1NJECTIVE RESOURCES

The implementation as dascribed involves a high overhead. If only simple •

synchronization problems are to be handled such as the message buffer of example

2.3, many of the details of this implementation, such as the need to check more than

one waiting list at the completion of an operation, aren't needed. It is useful to know

what resources can be considered to be simple in this respect. This section will give

an answer to that question.

There are several restrictions which can be made to en operetion on e finite

state resource which will result in a more efficient implementation of the operation.

The first such restriction requires that an operation always results in the same state

independent of the one in which it started.

Definition: An operation f is projuctiw if (3q) (Vp) if f can be applied at p then
S(p,f) ■» q. A finite state serial resource is projectitw if every operation
on It is projective.

In the message buffer of example 2.3, remove alway« results in lastremove end insert

always results in lastinsert. Therefore, the message buffer is e projective resource.

Example 2.12: Let the regular expression {ff*g)* represent the etloweble

32
SERIAL RESOURCES

seauences of operations on a shared resource. The synchronization
elafonships cons.st of two states p and q where pi. *e n.t.al state

S(pj) " sS.f) - q. and S^g) - P- Since f always results in state q .na g
always results in state p, each is projective.

The state of', projective resource represents only the most recent operation to

execute on that resource since each operation forgets whatever history was contained

in the previous state. This implies that there may at most be one more state than

there are operations, an initial state and a state corresponding to each operation.

To show that for a projective resource there can't be two similar states p end q.

let f be any operation wh.ch can be applied at p. Then f can also be applied at q. But

since f is projective. S(p.f) - S(q(0. Therefore, p and q -re equivalent, which Is .

contradiction of the assumption that no two states of a finite state resource are

equivalent.

Since each projective operation always results in the same state, this resulting

state is no longer a function of the state from which the operation started. The

implementation can therefore be made simpler since the resulting state doesn't need to

be calculated but is a constant. Also, there is no longer any need for an operation to

remember what the state was when it started.

Another restriction which can be made to a finite state resource is to require

that, with respect to each operation, the successor function S is one to one.

Dofiniiion: An operation f is iuj.ctivc If (Vq) there is at most one state P such
that S(p,f) - q- A finite state serial resource .s inactive if every

operation on it is injective.

Thus, if two diff.r.n. ar» rwulfln th tat. then th.y mu.1 h.v. <M(.r.nt

operations.

SERIAL RESOURCES

Example 2.13: If the regular expression (fg+gf)* represents the sequences in
which the operations of a shared resource are allowed to execute, then
the COrresnonHino cwnrhrnnl-jufir.« rAl«»:«._.u: J.I _« - . ,*, . . .

p and

ch the operations of a shared resource are allowed to execute, then
corresponding synchronization relationships consist of pn initial state

nd states q and q' such that SC^f) - q, S(p>g) * q', and S(q,g) - S(q',f) -

33

■

g

>-p -=
f

\ f

>q
^

The resource is injective since p is the only state such that S(p,f) - q and
S(p.g) « q\ q ,s the only state such that S{q,g) - p, q' is the only state
such that S(q',f) = p, and there is no state p' such that Sfp'.f) - q' or
Sip'.g) - q. However, it isn't projective since neither f nor g is a
projective operation.

If a serial resource is projective before the equivalent states are combined, then

it r.ust also be projective afterward. This is trivially true srnce if an operation may

only result in one state and then states are combined it still will only be able to result

in one state. However, a serial resource which is injective before equivalent states

are combined might not be injective afterwards, This can be seen by considering the

injective resource with S(p,g) - q, S(p,f) - S{p',h) - p', and S(q,f) - S(q',h) - q'.

States p' and q' are equivalent. Combining them into a new state p" yields S(p,f)

S(q,f) - p". Therefore, the resource is no longer injective.

SERIAL RRSOURCES 34

The process of conblning equivdlent states can sometimes be reversed to maKe

an operation which isn't injective into one that is. Assume that Sip,*) - S(p,,f) - q. If

there is no arc progression from q to either p or p', then cfsat« ■ new state qj' for '

every state qj to which there is an arc progression from q, Also, create a new state

q'. For each q^ and operation g, if S(qi*) - ^ then let S(qi
,,g) - qj'. Also, let S(p',f) -

q1. If there was an arc progression from q to p, then a state p" would have been

created such that S(p")f) - q' and th»re would have been an arc progression from q' to

p". This procedure would then have continued indefinitely without f ever becoming

injective.

Examp!«» 2.13 shows that not every injective resource is projective. On the

other hand, the projective resource of example 2.12 isn't injective since Sfp.f) -

S(q,f) - q. The intersection of these two serial resource classes, though, turns out to

be an interesting class itself.

Ddfiniiion: An operation is simple wial if it is both projective id injective. A
resource is simple terial if every operation on it is simple serial (it is
both a projective and an injective resource).

For each operation of a simple serial resource, there is only one state from which it

may start execution and only one state which can result, It is easily seen that the

message buffer of example 2.3 is such a resource.

If the several waiting list implementation is used for « simple serial resource,

each list needs to be associated with only one state. This is because each operation

may only be applied at one state. This means that at the completion of execution, an

operation will only check one list to see if any processes wilting can now continue.

SERI4. RESOURCES 35

The boolean state variables can also be considered to be boolean semaphores. The

result is that each operation starts execution by doing a P on one of these semaphores

and concludes by doing a V on the senaphore associated with the resulting state.

If the sequences of operations defined on a serial resource are controlled by

preceding each operation with one P and following it with one V, then each semaphore

must be boolean. This is because otherwise if a semaphore ever attained a value of

more than one, any operation which started with a P on that semaphore would be able

to execute in parallel with itself. Also, only one semaphore can have a positive value

when no operation is executing and none can have a positive vVue when one process

is executing on the resource. Thus, each semaphore may be thought of as a state and

for each operation the semaphore on which a P is done represents the state that the

operation waits for and the semaphore on which a V is done represents the resulting

state. Therefore, the c-<»ss of serial resources which can be implemented with each

operation preceded by :>ne P and followed by one V is the same as the simple serial

resources.

PRIORITY

When more than one waiting process can start execution from a stf'e which

results from the currently executing process, a choice must be made. The decision

criteria is referred to as a priority policy. One such possible poltcy, FCFS, chooses the

process which has been waiting the longest. The waiting lists act like simple queues in

this case. Another possible policy is to use the same priority for each process that

the scheduler does. T'm decision as to which priority policy should be used Is the

responsibility of the system designer.

SERIAL RESOURCES 36

A warning must be made about the possibility of starvation when a policy other

than FCFS is used. This can occur it for some state more than one process can start

execution whenever the resource enters that state. If one of these waiting processes

has a sufficiently low priority, it might never be chosen. This problem doesn't occur

with a FCFS policy since the longer a process waits, the higher its priority gets.

Often when more than one operation may be applied at a given state, it is

necessary to give processes waiting to execute some operations a higher priority than

processes waiting to execute the others.

Example 2.14: Consider again the message buffer of example 2.1 with the
modification that any sequence of the operations Insert and remove are
acceptable. In order that the most current message is received, insert will
have priority over remove.

Another example is a storage allocator on which the operations getspace and

releasespace are defined. Releasespace has the side effect that it will collapse any

two adjacent blocks of free storage into one. Therefore, it will have priority over

getspace.

The priority relation among the operations for a state must form a partial

ordering. This means that for operations f and g, exactly one of the followirig is true.

Either f has priority over g, g has priority over f, or they have equal priority. In

addition, this relation must be transitive. This means that if f has priority over g and g

has priority over h then f also has priority fver h. However, since the operation

priority is defined for each state, it is possible that the partial ordering between two

operations is different for the various states at which they each may be applied, This

may be done to prevent starvation. For instance, consider example 2.14 again. After

SERIAL RESOURCES • 37

the buffer has been written twice, procesees trying to receive information from It will

bo given a chance. Three states are needed with S(p,insert) - p', S(p',lnsert) -

S(p",insert) - p", and S(p,remove) - SCpVemove) • S(p",r8move) ■ p.

r
TnserT

insert insert
 »P' -^ ^P"

remove / remove / remove
I II —ft m i mi i ■■■ipi mi t(, . r^ ,—i , ,

Operation insert is given priority at p and p' and remove is given priority at p".

It can be shown that p, p', and p" are equivalent. They can't be reduced,

though, due to the priority differences. The algorithm described above fo find

equivalent states must therefore be modified to handle priority. An initial partitioning

of similar states is made as before. For each set created by the partitioning, the

operations which can be applied at the states of the set must have the same relative

priority at each of those states. If they don't, then that set must be divided. After

this step in the example, the partition would be (p,p'} and {p"). The rest of the

algorithm is then applied.

The implementation of operation priority is simplest when the several waiting

list policy is used. If operations f and g may be applied at some state with f having

the higher priority, then when the resource enters that state the welting list for

processes trying to execute f is checked. Only if this list Is empty is the one with

processes trying to execute g considered. A problem arises if f and g may be applied

at exactly the same set of states. Then processes trying to execute these operations

wait on the same list. This rule must be altered whenever one of these operations has

98
SERIAL RESOURCES

priority over the other at any of these states where they can be applied. In that case,

the waiting list must be divided.

In the single waiting list implementation, the processes are ordered according to

which operations they wait on. However, problems arise when a partial ordering of

the operations can't be made. This can occur when one operation has priority over a

second at some state but the priority is reversed (or they both have the same

priority) at another state. Another case is when the transitive law doesn't hold. An

example is when an operation f has priority over an operation g at or» state, g has

priority over h at a second state, and h has priority over f at a third. When such a

situation occurs, the entire wailing list might have to be searched for each priority

class.

CHAPTER III

SUBCLASSES OF REGUUR EXPRESSIONS

AS Seen m fh9 ^ Ch^ ^ ^oni^on for .ny mt. f t
resource can be ^nr* * fe 8t"te ser'8l

» -..M.^: ;:7i:^te- ° -..
,Bfe. if the synchronization is -yn«. J .

/- regular expressions can be restricf.H ^
"0 such test would h. ^srncted correspondingly,

U,d be neC9ss^/- Several euch subclass will h
Edition, a comn... masses wdl be «uggested. Jn

' a COmP»r'son will be made between ftn
oerween one such subclass «n^ .i-

resources. First thn . 'wciass and simple serial
St' th0U8h' '* ** be necessary to look at fh. , .

«■egular expressions and r •> ^'»t.onsNp between
P ess.ons and finite automata further.

AS H0PCr0ft and U"^ ^69] point out. a reBu(ar
converted to a rn

g expression R can be
0 a COrr^POnding nondeterministic «„». t

™™er. The finite . ♦ ^ '" ,he fo"0^g
n'fe aUt0mat0n «P**'m*,M) where *(p f, . q flnd „ n

^ responds to the regular expression with the , , ''"'^ ''^ "

 xltfromit. "^^^---matone^,,^

If thefinite«utomatonM-(KSJinn ^,J,B,p,F) corresponds to th« r««..i

40

an

e

SUBCLASSES OF REGULAR EXPRESSIONS

8'(p',t) - {«(PAP) 'f ^P.f) * F

. j(p,f) otherwise

r(q,0 - («(q.O.p} if «W) (F

. {(q.f) otherwise (Vq < K)

corresponds to the regular expression R*. If p < F and Kq.f) - P then «'(q.O -

{«(q.O.p} - (Pi - «(q.f) Therefore, F may be replaced by P - F-{p} in the definition of

«'. Since (Vq' i P) (Vq i Kulp'}) (Vf « X> if q' i «'(q.f) then p < «'(q.f). a new final state

q" can be created to replace {q'.p} and q' can be deleted. The states which can result

from reading a symbol when the state is q" must be the same as those which c

result when the automaton is in either state q' or state p. Therefore, W.f)

{r(q',f)18'(p,f)}. By renaming each new state q" representing {q'.p} to be q', the finit

automaton is changed so that

8'(p',f) - 8(p,f)
«'(q.f) - {«(q)f)(8(p,f)} (Vq < F-{p})

- 8(q,f) otherwise

Notice that (Vf < 7) «'(p.f) - «'(p'.f) and therefore p and p' are equivalent. Thus, if

p < F they can be combjned. Otherwise, if nothing can result in p then it can be

deleted. In either of these cases, the initial state can be renamed to be p and the

resulting finite automaton is (K,I,«',p,F) where «'(p'.f) is no longer defined.

Let M - (K.Z.J.p.F) and M - (KM'.B'.pT) be finite automata corresponding to

regular expressions R and R' such that KnIC is empty. For f not In I define (Vq < K)

«(q,f) to be a dead state and for g not in 2' define (Vq < K') «'(q.g) to be e dead state.

The finite automaton M^ - (KuKMuI',8,'1,P'rl) where

i"Aq,f) - «(q.O (Vq < K-F)
- Wq.OW.f)} ^q < F)
- 8'(q.f) (Vq < K')

SUBCLASSES OF REGULAR EXPRESSIONS 41

and where F"j - FuP if p' i P or F"j - F' otherwise corresponds to the regular

expression RR'. The finite automaton M*^ - (KuK^fp^^UlM^iPTV where

8M2(P7) - {«(p.fxaxp'.f)}
a"2(q,f) - «(q,f) (Vq < K)

- «'(q.f) (Vq (IT)

and where

F"2 - FuF'u{p"} if p (F or p' (P
- FuF' otherwise

corresponds to the regular expression R+R'. If Znl' is empty and I and 5' are

deterministic, then so are t'\ and «"g since (Vq (K) (Vf i IuX*) either f isn't In £ and

8(q,f) is dead or else f isn't in I' and {'(p'.f) is dead

RESTRICTED REGULAR EXPRESSIONS

As has already been shown, the desired sequencing of operations on any finite

■

state serial resource may be expressed using a regular expression. Since for

implementation reasons a system designer might wish to restrict himself to simple
I

serial resources, it would be helpful to know what subclass of regular expressions

provides exactly the synchronization needed for these resources. In an attempt to do

this, the synchronization provided by several subclasses will be examined.

Dafinition: An initial loop regular expression is defined recursively as follow».
A regular expression R* is initial loop. RR' is initial loop if R is and R+R' is
initial loop if either R or R' is. No other regular expression is Initial loop.
A final loop regular expression is defined similarly. A regular expression
R* is final loop. R+R' is selection final loop if either R or R1 Is final loop
and RR' is (selection) final loop if R' is.

42
SUBCLASSES OF REGULAR EXPRESSIONS

' Some examples of initial loop regular expressions are f» f*g. »nd fVh. The regut.r

expressions f* fg*. and fg*+h are final loop.

Definition: A r^riaed regular expression is also defined recorsively. A .ingle
f symbol regular expression is restricted. If R is reslncted »^ "»tther

initial nor final loop then R* is restricted. If R «nd R are restrcted and
have no symbols in common, then R+R' is restricted I '\ »^ ^' ^
and PR' is restricted if either R isn't final loop or else It isn t select.on

final loop and R' isn't initial loop.

The general requirements for a regular expression to be restricted are that no symbol

may be used more than once and that subexpressions of the form R* must occur In the

context R'R*R" where R' isn't final loop and R" isn't initial loop. The exceptions ere

that R" may be omitted provided that nothing else may follow R* and the whole

expression may take the form R .

To help understand which regular expressions are being excluded, consider fgt,

I (fg*)» fVh. 'V. »"d (^h)e. None of these is a restricted regular expression. In

the first, the symbol f is repeated twice. In the second, R - (fg*) is final loop and

therefore R* isn't restricted. In the third. f*g+h is of the form R.R' and is initial loop

so it isn't restricted. The next violates the condition of a final loop subexpression

being followed by an initial loop subexpression. Finally, fg* is final loop and therefore

(fg*+h) is selection final loop and can't be followed by anything. Regular expressions

of the form (R*)* aren't restricted since R* is initial loop. However, the same sequence

of symbols can be represented by the restricted regular expression R*.

As might be expected, the rules for constructing a finite automaton from a

restricted regular expression can be simplified. In addition, several interesting

properties are true of the finite automata sp constructed.

SUBCLASSES OF REGULAR EXPRESSIONS 43

Thooram 3.1: For a restricted regular expression R with the corresponding
finite automaton (K.I.B.p.F) the following properties are true.

Properly 3.1.1: Either R is final loop or (Vq i F) (Vf * I) »(q,f) is dead.

Property 3.1.2: (Vf (I) (Vq.q' < K) either »(q,f) or 8(q,,f) is dead.

Property 3.1.3: (3f * I) «(p,f) isn't a dead state

Properly 3.1.4: Either R is initial loop or (Vq i K) (Vf i I) «(q.f) * p and
p isn't in F.

Property 3.1.5: If R is simp e (not selection) final loop, then there is
only one state in F.

Furthermore, let (K.I.B.p.F) be the finite automaton corresponding to R and
(K,,r,«',p,,P) correspond to R'. Then (K-F.Z.ij.p.lp}) corresponds to R*.
either ((K-F^KMuI'^.P.F*) corresponds to RR' or there is only one state
p" < F and (Ku(K,-{p'l),IuI'l«3,p,F') corresponds to RR', and
(KlKKXp'D.SuI'.a/j.P.FuF') corresponds to R+R' where

if l(q,f) < F
otherwise (Vq < (K-F))
if «(q,f) < F
otherwise (Vq < (K-F)) (Vf i I)
(Vq < K') (Vf < 2')
(Vf (T)
(Vq (K)(Vf < I)
(Vq i (K'-{p'})) (V* (V)
(Vf < I')
(Vq < K)(Vf i I)
(Vq < (K'-{p'})) (Vf < V)

Any arguments for which l^ *3' or *4 8re u^efined 8rB dead-

Proof: The proof is based on the invariance of the properties over the

construction of the finite automaton. The details are presented In the

Appendix.

Notice that for the finite automaton constructed in this manner from a restricted

a^q.f) - P
- 8(q,f)

l2(q,0 -P'
- «(q,f)
- «'(q.f)

63(p",f)
»3(q,f)

- «'(p'.f)
- I(q,f)
- 8'(q,f)

84(p,f)
«4(q,f)

= BXp'.f)
- «(q.f)
- 8'(q,f)

SUBCLASSES OF REGULAR EXPRESSIONS 44

regular expression, 6 is determinislic. Also, for each symbol f thsre le at most one

state q such that j(q,f) isn't dead. This means that for each operation of the

corresponding set of synchronization relationships there is at most one state at which

it can be applied. Therefore, the corresponding resource must be simple serial. In

addition, the only states which can be equivalent are those for which no operations

may be applied. The result is that the algorithms to make the synchronization

relationships deterministic and to remove equivalent states aren't needed. All that

need be done is to combine all of the states at which no operations can be applied

Z EXPRESSIONS

Next, the relationship between restricted regular expressions and

synchronization relationships will be examined. It will be shown that if the

synchronization for a shared resource can be expressed using s restricted regular

expression then the resource must be simple serial. However, there are some simple

serial resources for which the synchronization can't be expressed using a restricted

regular expression.

In order to characterize those synchronization relationships for simple serial

resources which can't be written as restricted regular expressions, It will be necessary

to study groups of three arc progressions such that the first and second have the

same final state and the second and third have the same initial state. It will be

necessary to require that any given state may occur in at most two of these arc

progressions. However, there is no requirement that the first or third can't be null.

By a null arc progression is meant one from a state to itself which contains no arcs.

SUBCLASSES OF REGULAR EXPRESSIONS 45

Definition. A Z exprrnnion from a state p to a state q consists of arc
progressions oc from p to some state qn, ß - (c|Q|fp..>(c|n_j,fn) from some
state qQ to qn, and t from qQ to q such that (Vi, 0<i<n) qj t p, (Vj, 0<j<n)
q: t q, (Vi, 0<i<n) there are not two arcs (qj,f) in oc and (qj,g) in 7, there is
no arc (qQ.f) in <^i and there is no arc {qn,f) in y.

Several conditions which must be true of Z expressions but which aren't explicitly

stated may be derived from this definition. One is that qQ t qn. Otherwise, either y is

empty and q - qg - qn or else (qn,f) - (qQ.f) is in y for $ome symbol f from the >>put

alphabet. Another is that qQ t p. Otherwise, either ot is empty add qn - p - qQ,

violating the above condition, or else there is an arc (p,f) - (qQ,f) in od. Finally, if p - q

then qQ »* q and qn t p. If this wasn't true, then p - qg or q - qn. Thus, neither ot ,

nor y can be empty when p ■ q.

As an example, consider the synchronization relationships with states p, p', q',

and q and operations f, f, g, g', h, and h' such that S{p,f) ■ SUV ',) - p', S(p,f') ■ q't

S(q,,h) - q, and S(q,h') - S(p^g,) - p.

Then the arcs (p,f), (q'^), and (q',h) form a Z expression from p to q. Also, the arc

(q',g) forms a Z exptession from p' to q' for which the oi. and y arc progressions are

each empty.

In what follows, it will sometimes be easier to deal with Z expressions restricted

such that oc and ß have only their final states in common and ß and y have only their

SUBCLASSES OF REGULAR EXPRESSIONS 46

initial states in common. It will also be required that p may not occur in u other than

at the start and q may not occur in y oHier than at the end.

Dofitdtion: A »impl« Z «xprtsuhn from a state p to a state q consists of a Z

expression o^ - (PÖ«l)-(Pm-l»8m' ^ " ^O«*P-ton-lV' "^ T where U ''
from p ■ PQ to qn and y is from qQ to q such that (Vi, 0<l<n) there is no
arc (qj.f) in oc or y, (Vj, 0<j<m) p H pi, and there is no arc (q,f) In y.

Actually, the use of simple Z expressions isn't really a restriction since ever/ Z

expression may be reduced to a simple Z expression.

Lemma 3.2; If there is a Z expression from a state p to a state q, then there
also is a simple Z expression from p to q.

Proof: Let u - (Po.8i)-(Pm-i.gm). fl - (<«0',1)-•K-l-V' and T be « Z

expression from p - PQ to q. If (3j, 0<j<m) p; - p, then

(Pj.gj+l)..(pm_i,gm), /?, and y form a Z expression from p to q. If there is

an arc (q,r in y, then y can be written as yiq,f)yn whert y* is a (possibly

empty) arc progression which doesn't contain such an arc and oc, ß, and 7'

form a Z expression fron p to q. If (3i, 0<i<n) there is an arc (qj,f) in u,

then (3j, 0<j<m) qj - pj. By the definition of a Z expression, there is no

arc (qj.g) in y so (P0.g1UPj-i.gj). i%f\)-M\^\\ »"d t form a Z

expression from p to q. Likewise, if (3i, 0<i<n) there is an arc (qj,f) in y,

then y can be written as f'^Ot" where y" is from qj to q. By the

definition of a Z expression, there is no arc (qj.f) in pd so ot,

(qiifi+l)...(qn_lifn), and y" form a Z expression from p to q.

SUBCLASSES OF REGULAR EXPRESSIONS 47

PERSISTENT SET ENTRY STATES

Of particular interest will be Z expressions from the initial state to what may be

regarded as the final states. In the conversions from a restricted regular expression

to a finite automaton, it may be seen that the only final state of a loop was its initial

state and that either the regular expression was final loop or else any final states had

no nondead successors

Definition: An entry Hate of a persistent set is an element q of the persistent
set such that either q is the initial state of the resource or Oq', q' not an
element of the persistent set) (3g) S(q,

fg) - q.

Let the synchro-rzation for a serial resource be expressed by the regular expression

(f+rhKgh)*. The synchronization relationships have three states p, q, and q' such that

S(p,f) - S^'.h) - q and SW) - S(q,g) - q1.

The states q and q' form a persistent set with g and h being the auxiliary operations.

Since p isn't in the persistent set, S{p,f) - q, and SW) - q', both q and q' are entry

states into the persistent set. Notice that (p,f), {q\h), and < form a Z expression from p

to q' and (p.f), (q.gV and < form a Z expressirn from p to q. The presence of these Z

expressions can also be deduced from the following result

Ijfimma 3.3: If some persistent set has more than one entry state, then the
initial state of the resource p isn't in this set and there is a Z expression
from p to each of these entry states.

SUBCLASSES OF REGULAR EXPRESSIONS

Proof: If p is an element of the persistent set, then every state must also

be in the persistent set and it can be the only entry state. Otherwise, let

q and q' be entry states for the persistent set. There must ba arc

progressions u from p to q, W from p to q', y from q' to q, and T' from q

to q'. Then « and y form a Z expression from p to q' end U* and T' form

a Z expression from p to q.

The final states of a restricted regular expression can now be characterized.

Umma 3.4: If the synchronization for a resource can be fxPress^ w;th »
restncted regular expression, then the set of persistent set «"^ st8tes

and states with no nondead successors is the same as the set of final
states produced using the construction ^n tr.^orem 3.1.

Proof: It will also be shown that there must be an arc progression fro,',

every state to a final state. The proof is by induction on the complexly

of the regular expression. For a single element regular expression this is

certainly true. Assume »hat it is true fur R. Since there Is a> arc

progression from every stele to 8 final state, there must be n ire

progression from every state to the initial state p in R*. Thus, all f the

states form a persistent set and there are no states such that every

successor is dead. Since p is the only final state, the lemm« is true for R*.

Assume that it is true for R and R'. For RR« and 62 since tSere must be an

arc progression from every state of K-F to a state of F in R, there must

be an arc progression from every state of K-F to p' in RR\ Atso, there is

no arc progression from any state of IC (including p') to a state of K.

Thus, every state of K-F has a nondead successor and none can b« in any

48

SUBCLASSES OF REGULAR EXPRESSIONS 49

persistent set. Since (Vq i K') B^q.f) - BXqA every successor of q Is

dead in RR' iff they all are de&d in R'. Also, p' is the only state in K' such

that «2<q.f' " P' for a state ^ * K'F- Thus' a st8t€ ^ < ^ is a Per6iäter,t

set entry state in RR' iff it also is in R', Since the final states for RR' is F'

and since there is an arc progression from every state of IC (including p')

to some state of F', the lemma and hypothesis are true for RR1. If 83 is

used, then there can only be one state q in F. Thus, q is the only state of

K such that 83^,0 < K'. Since there is an arc progression from p' to

every element of F' in R', there must also be an ire progression from q,

and therefore from every element of K, to every element of F'. Thus, no

state of K has all dead successors. As with S^ ,here "8 no q (K'^p'} such

that 83(q,f) < K for some f and also (Vq < K'-lp'}) 83(^0 - 8,(q,f). Thus, no

state of K can be in a persisten". set and a state of «Mp1} is a persistent

set entry state or has no nondead success's in RR' iff the earn» is true in

R'. Since the final states of RR' ere F', the lemma and hypothesis must be

true for RR'. Finally, for R+R', since ^nere must be an arc progression

from every state in R to a state in F and there must also be an arc

progression from every state of R' to a state in P, the hypothesis will be

true in R+R'. For every state q i {K-{p]M>C-{p'}) an operation may be

applied at q in R+R' iff it could be applied at q in R or in R' and the

resulting state will be the same. Also, by properties 3.1.3 and 3.1. •»> p and

p' have at least one nondead successor and no arc results in these states

in R and R' and the same is true for p in R+R'. Therefore, a state will

have no nondead successors or be a persistent set entry slate in R+R' iff

the same was true in either R or in R\ 1

I

SUBCLASSES OF REGULAR EXPRESSIONS 50

SYNCHRONIZATION AND RESTRICTED REGULAR EXPRESSIONS

It can now be shown that each restricted regi,: expression describes the

allowable sequences of operations for some simple h, -esource such that in the

synchronization relationships there is no Z expression from the initial state to any

state q such that either no operation may be applied at q or else q is a persistent set

entry state.

Thooram 3.5: A shared resource on which the allowable sequences of
operations are given by a restricted regular expression is simple serial
with no Z expression from the initial state to a final state.

Proof: The lack of'a Z expression from the initial state to a final state is

invariant over the construction of the finite automaton. The details are

presented in the Appendix.

Corollary 3.6: An elementary path expression without curly brackets is simple
serial and contains no Z expression from the initial state to itself.

This last theorem shows that every resource for which the allowable sequences

of operations can be given by a restricted regular expression is simple serial but that

not every simple serial resource can have the synchronization for it expressed in this

manner. The next question is whether or not the synchronization for every simple

serial resource with none of these Z expressions can even be expressed using

restricted regular expressions.

Thaorom 3.7: A simple serial resource with no Z expression from the initial
state to a state q such that either no operation may be applied at it or
else q is a persistent set entry state can be written as a restricted
regular expression without repealed names.

51
SUBCLASSES OF REGULAR EXPRESSIONS

«

Proof: The proof shows that the synchronization relationships can be

split into nonempty parts reversing the construction from a restricted

regular e.press.on or else a loop can be broKen if there are no Z

expressions, The details are presented in the Appendix.

It has been shown that th*re are some simple serial resources for which the

synchronization can't be g.ven using restricted regular expressions, Perhaps allowing

operation names to be repeated would help to solve this problem. Unfortunately, this

is not the case.

Thtorom 3.8: The synchronization for ^ /init« ^^/S^Vo.l
described using a regular express.on m wh.ch the

t,;;
n

n
d

a
,^"8

m 0
y
r ^

restricted regular expression hold but in wh.ch operat.on names may be

repeated.

Proof: It will be shown that for every regular expression R there is a

regular expression R' such that R and either R' or (R'+0 express the same

strings and the conditions for a restricted regular expression hold where «

is the null expression. Since whether or not the null string is acceptable

is unimportant when expressing the synchronization of operations on a

resource. R' satisfies the theorem. The proof will be by induction on the

complexity of the expression. Clearly, a single symbol expression is a

restricted regular expression which is neither initial nor final loop.

Assume that R and R' satisfy the conditions and are neither initial nor final

loop. Then R+R', RR^R. W**\ *****'> a"d RR*R+R ^ Sa,iS,y ^

conditions and none is either initial nor final loop. Since R* - (R+O* -

(RR*R+RW. (R+0+R' - IW*0 " (R*0*(R'*0 - (R*R><. K™ ' RR,+R'

(R+0R. „ RR'.R', and (R+(KR'*0 - (RR>R+R>< ^e theorem is proved.

üel _ _ .

SUBCLASSES OF REGULAR EXPRESSIONS 52

Another change which ctn be made is to remove the condrti -ns but to continue

to prohibit the repeating of operation names.

Dafinition. A nonropeai ragular expreinon is a regular expression in which
subexpressions of the form R+ - RR* and R+<, where (is the null
subexpression, are allowed but in which no operation name is repeated.

The symbol < may be simulated by creating a null operation f which will never be

called. Then f* is the same as the symbol (,

Lemma 3.9: For a restricted regular expression, the initial state of a final loop
must be a final state.

Proof: The proof is by induction. If the regular expression is of the form

R*. then by theorem 3,1, the initial state is a final state. If the regular

expression is of the form RR', then the final states of R' are final states.

Since RR1 is final loop iff R' is, if the lemma holds for R', then it holds for

RR'. Likewise, if the expression is of the form R+R', then the final states

are those of R and R', Also, R+R' is final loop iff either R or R1 is. Thus, if

the lemma holds for R and R', then it holds for R+R1.

Theorem 3.10; A serial resource on which the allowable sequences of
operations is given by a nonrepeat regular expression either isn't simple
serial or else the synchronization can be expressed using a restricted
regular expression.

Proof: If a nonrepeat regular expression isn't restricted, then one of the

following situations mu I he true.

Coie 1: A subexpression has the form R* and R Is restricted and simple
final loop. If R has the form R'*, then R and R* are equivalent so
the subexpression could have been written as R. Assume that R has
the form R'R"*. Since R is restricted, R' can't be final loop and by
theorem 3.1, properties 3.1.1 and 3.1.3, its initial state p can't be

SUBCLASSES OF REGULAR EXPRESSIONS 53

one of its final states. Thus, no operation of R" can be applied at p
in R and since p is also the initial state of R, none can be applied at
the initial state of R*. However, after some string of R' is executed
in R*, any operation which can be applied at either the initial state
of R' or fie initial state of R" can be applied. Thus, this state p'
can't be equivalent to the initial state. Any operation which can be
applied at p.in R' can be applied at the initial state of R* and it p'.
Therefore, R* can't be simple serial.

Cote 2: A subexpression has the form R* and R is restricted and selection
final loop. There must be a subexpression of R of the form
R R * + R3 where Rj is neither initial nor final loop. Thus, no
operation which can be applied at the initial state of Rg* can be
applied at the initial state of R. By lemma 3.9, the initial state of
R2* must be a final state of R. Therefore, there must be a state p'
in R* at which everything which may be applied at either the initial
state p of R or at the initial state of R2* may be applied. By
property 3.1.3 of theorem 3.1, p and p' can't be equivalent but
everything which may be applied at the initial state of R may be
applied at both states. Thus, R* isn't simple serial,

Cote 3: A subexpression has the form R* and R is restricted and initial
loop but not final loop. Thus, R has the form R^R" where R" is
neither initial nor final loop and its ini ial state can't be a final state.
If no operation other than those contained in R can be applied to
the final state of R*. then R* can be written as (R'+R")*, which is
restricted. Assume that operation f can be applied at the final
states of R*. At the initial state of R*. f may be applied along^with
any operations which may be applied at the initial states of R' and
R". However, if a string from R' executes, only those operation
which may be applied at the initial states of R' or R" may execute.
Therefore, there are two distinct states at which these operations
may execute and R* isn't simple serial,

Ca«c 4: A subexpression has the form R+R', R is initial loop, and both R
and R' are restricted. Thus, R has the form R^ (R2 is optional).
Any operation which may be applied at the initial states of K^ and
R' may be applied at the initial state of R+R'. However, after a
string of operations from Rj have executed, the operations which
may be applied at the initial state of Rj may be applied but those
from R' can't be. Thus, R+R' isn't simple serial.

Case. 5: A subexpression has the form RR' where R is final loop, R is
initial loop, and both R and R' are restricted. Thus, by lemma 3.9,
there is a loop Ri* in R such that the initial state of Ri is a final
state of R. Also, R' has the form R/R". Let p be the initial state of
Ri in RR'. Any operation which may be applied at either p in R^ or
at the initial state of R2 may be applied at p in RR'. However, after
a string of operations from R2 has executed, thos© operations which

i^J

54
SUBCLASSES OF REGULAR EXPRESSIONS

may be applied at the initial state of R2 may be applied but those
which can be applied at p in R can't be. Therefore. RR' isnt simple

sarial.

CM« 6: A subexpression has the form RR' where R is selection final loop
and R and R' are restricted. As with case 2, R must have a
subexpression of the form (R1R2* * R3) and the initial state of Rg
and the final state of R3 must be final states of R. Any operat.on
which can be applied at the initial state of R' can be applted a both
of these final states in RR'. The operations which can be applied at
the initial state of R2 in R can't be applied at the final state of R3,
however. Thus, RR' isn't simple serial.

CM« 7: There is a subexpression of the form R+ where R is restrictsd. If
no operation not in R can be applied at a final state of R , then R
and R* are the same for synchronization purposes. Assume that t
isn't in R but can be applied at a final state of R . It can t be
applied at the initial state of R+, but it can be applied after some
sequence of R. Thus, there are two different states at which .mtial
operations of R can be applied and R+ isn't simple serial,

C04.« 8: There is a subexpression of the form (. Since R« - R - «R, «* -<.
and (R+O* - R*. assume that (is included in a subexpression of the
form (R+O, If the initial state of R is a final siate or if no operation
not in R can be applied at the final states of R, then (R+O - R.
Assume that R is simple serial, the initial state p of R lent a final
state, and there is at least one operation f not In R wh.ch can be
applied at the final states of (R+O. If g is an operation of R which
can be applied at its initial state, then it can't be applied at any
other states, including the final states. However, f can be applied at
both the initial and final states of R. Therefore, (R+O isnt simple

serial. • i

«

Thus, no nonrepeat regular exp-ession describes the synchronization for a simple |

serial resource which can't be described using a restricted regular expression.

RELATIONSHIP TO CONTROL STRUCTURES

As shown in chapter II, the synchronization relationships for a simple serial

resource may be thought of as a directed graph with each state represented by a

SUBCLASSES OF REGULAR EXPRESSIONS 55

node and each operation represented by an arc. This graph has the property that

there are src progressions from the the node representing the initial state to each of

the other nodes. Flowcharts with th property that each arc represents a different

computation with one entry and one ewt point «re also equivalent to the same set of *

directed graphs.

Regular expressions and control structures from programming languages can also

be compared.. The expression RR' means first R and then R' must occur. Likewise,

concatenating two computations means do the first and then do the second. The

expression R* means that R occurs zero or more times and the statement

WHILE p DO R means that R will be executed zero or more times. The expression R+R'

means that either R or R' must occur and the statement IF p THEN R ELSE R' means

that either R or R' will be executed. Since

DO R UNTIL p » Rj WHILE NOT p DO R

and R* - RR*, they each produce the same sequences. Finally, R+(means that R may

optionally occur and IF p THEN R means that R will opttonally be executed.

The results that are given above about the relationship between regular

expressions and simple serial resources can be applied to flowcharts in which each arc

represents a different computation and programs which are written using the above

control structures. Theorem 3.10 shows that only those flowcharts without Z

expressions from the starting node lo a node with no successors or which is a

persistent set entry node can be written using the above control structures without

repeating some computation. Furthermore, theorem 3.5 shows that these flowcharts

can be written without the statements IF p THEN R and DO R UNTIL p. This result is an

extension of theorem 1 in Peterson, Kasami, and Tokura [PKT73].

SUBCLASSES OF REGULAR EXPRESSIONS 56

An extension to regular expressions which might be useful is to allow a

subexpression to be "exitted". In order to do this, the notation would be extended to

allow a label to be applied to a subexpression. Then an indication could be made

within the labeled subexpression to jump to the point immediately following it.

Exampl« 3.11: The regular expression (fg)*(fh+h) can be written R!(f(g4-«R))*h.
The subexpression (f(g+-»R))* is labeled by R and the notation -♦R means
that h is the next symbol to be considered.

This extension doesn't help though in trying to find a notation to express the

synchronization for simple serial resources Cven a simple expression like that in

example 3.11 is not injective and therefore isn't simple serial, Furthermore, theorem 3

of Peterson, Kasami, and Tokura shows that there are still simple serial resources for

which the synchronization can't be expressed using a regular expression without

repeated names even when this exit notation is allowed.

CHAPTER IV

ELEMENTS

The important property of a simple serial resource is that an operation may only

be applied at one state, Thus, only one comparison needs to be made to determine

whether or not an operation may execute. Assume, however, that an operation g may

execute if the history of executions contains the operation f. Operation g may be

applied at many states but most of the information contained in these states is

unimportant to g. If the. state can be divided into two parts, one of which indicates
t

whether or not f has executed, then g would only need to check that part to determine

whether or not it could execute. Furthermore, the part would have only one value at

which g could be apolied. In an attempt to study this issue, some modification to the

notion of state will be made.

For each resource, a new class of object which has a finite number of distinct

member', will be introduced. Each state, instead of being a single entity, will now be a

mult.set of these objects. A multiset [K69, page 420] Is a set in which members may

have multiple occurances. The notation U+V will represent the multiset in which each

member of the class occurs the number of times it occurs in U plus the number of

times it occurs in V. The notation n»U will represent the multiset in which the number

of occurances of each member is n times the number of its occurances in U.

Definition: An object which is used in the composition of a state is an element

ELEMENTS 58

Thes» elements, are not each confined to a single state but may be Included in several

of them. The states are distinguished from each other accordinj to which element«

they contain. Thus, no two distinct states are exactly the same multiset of element«.

Also, since a state is represented by a group of elements, checking the state variable

to see if an operation may execute consists of testing to see that one of several

coilections of elements is included in the current state.

STATE TRANSITIONS

To convert a state p into a state q requires that every element of p which Isn't

in q must be removed from the resource state and every element of q which Isn't in p

must be added.

Definition'. A »ate trannUion is the removal of some of the elements from the
state of a shared resource followed by the addition of some elements.
The notation which will be used for a state transition is <name>!{<elements
to be removed>) *♦ {<elements to be added>). The <name> part is optional
and will only be included when necessary.

«

It may be possible for a state transition to be used at several states. Thus,

{el} -» {e2) can transform the state {el,e3) into {e2,e3} and the «täte {el,e4} into

{e2,e4}.

An operation on a serial resource will be associated with a collection of state

transitions. For each state at which the operation can be applied, one of these

transitions will produce the appropriate resulting state. When a process attempts to

execute the operation. It will be delayed until all of the elements which are removed

by one of these state transitions are present in the current state. These elements are

ELEMENTS
59

then removed and at the end of execution the state transition is completed by edding

some elements to the state. If more than one process may now continue. . choice

must be made. Note that in general an operation doeant need to remove all of the

elements from its starting state but just those which aren't in the resulting state.

However, in order that another process doesn't start executing on the resource before

thir operation finishes, it must not "be true that a state transition associated with .ome

operation removes a subset of the remaining elements,

Example 4.1, Consider the regular expression ((fg+gf)h)' tnd the resulting
'states pi. P2. p3. and pA with S(pl.f) - P2. ^P«); P3» ^2*)-
S(p3.f) - pa. and S(p4,h) - pi. Let pi be composed of the elements e, al,
and a2, p2 - {e.bl.a2), p3 - {e.al.bZ}, and p/» - {e,bl,b2).

'pi - {e,al.a2}

p2 - {e,bl,a2) ^f

a --»p3-{t,Bl,b2}

h _.

p4 - {e,bl,b2}

If tWe.al} -> {e.bl} is associated with f, t -.{e^} -» {e,b2} is associated
w.th g and th:{bl.b2}-Mal.a2} is associated with h. then the proper

synchronization results.

Several things should be noticed in this example. First, f and g c.n each be

represented by just one state transition. Second. tf only removes e and al from the

current state. When f executes causing a transition from state pi or p3. a2 or b2

respecti ,ely remains part of the current state. Likewise, not all of the elements .re

removed from the current state when g and h start execution.

While a state transition doesn't always remove all of the elements of the state at

the start of execution of the associated operation, frequer/ly it must remove some

■

ELEMENTS 60

elements which also occur in the resulting state. Of course, It must then add thote

elements bark to the state at the end of e*ecution, In example 4.1, tj and tg remove

and add e to the state. The reason why e is used in thf« manner is that otherwise tf

and tg would remove {al} and {a2} respectively. Since these are disjoint »ets of

elements which are both contained in pi, the start of execution of f would leave the

elements for which tg was waiting in the state. Therefore, a process could «tert

executing g before f completed, violating the serial nature of the resource. The

solution to this problem is to create a new element which is contained in every state.

Then whenever state transitions remove disjoint subsets of a state, they must also

remove and add this new element. The state transition t^, doesn't need to remove e

since this is the only element remaining during its execution and none of the

transitions remove just e.

In addition to assuring that operations execute serially, there I« another

situation when the state transition from a state p to a state q caused hy an operation f

must both remove and add the same element. This occurs when the set of elements ,

which must bo removed ('oose which are contained in p but not in q) also form a

subset of some state p' different from p. If f can't be applied at p' or if this state

transition results in the wrong itate when applied at p' then the state transition must

additionally weit on some element e which is in p but not In p'.

Consider the following modification to example 4.1.

Example 4.2: Let there be five states with S(pl,f) - p2, S(pU) ■ P3» S(p2«) -
p4, and S(p3,f) - p5. It is irrelevant what operation« may be applied et
p4 and p5.

ELEMENTS 61

pl -{al,a2}
_t—>p2 - {bl,a2} >P* " {bl,b2}

T^->p3 - {al,b2) } >r>5 - {e')

The state transition (a2} ■♦ {b2} is associated with g and the state
transitions {81,82} -» {bl,82| and jal.W) -» {e1} are ^sociated with f.

If {al} -» {bl} was used instead of {al,82} •♦ {blIa2} then f could also teke p3 to p4.

An element e which occurs in every state isn't needed here since thf re aren't any

state transitions which remove disjoint subsets of a state. Another modification it. not

to allow f to be applied at p3. The «täte transition associated with f must still be

{al,a2} -» {bl,a2} to prevent it from being applied at p3.

Actually, in an implementation a state transition doesn't need to remove and then

add an element only to prevent being used at a state whe-£ it shouldn't be. A check

of the state to make sure that the element is present is all that is needed. However,

removing the element is acceptable and is consistent with the model of synchronization

as presented, so no further extension will be given for this special case.

SUBSTATES

If a state transition may occur more than once consecutively from a state, then

each element which it removes and doesn't return must have more than one instance in

the original state.

Example 4.3: Consider the regular expression ffgg)*. This may be represented

ELEMENTS . 62

with states pi - {el,el.e2}, p2 - {62,62,82}, and p3 - {Bl,e2t*£) with the
state transitions tf:{6l,el}-» {e2,e2) and tg:{e2,e2}-+{el,e2)
corresponding to f and g respectively.

Since t removes e2 and adds el, e2 must occur at least twice in p2 and el must

occur at least twice in pi.

Definition. The multiplicif/ of an element "e in the state p of a shared resource
is the number of instances of e in p.

In exampla 4.3, e2 has a multiplicity of three in state p2, two in state p3, and one in

state pi. Since t_ removes e2 twice, e2 must have a multiplicity of at least two in the

current state in order that tg may be used. Since this is not the case in pi and since

tH is the only state transition associated with g, any process which tries to execute g

when the state is pi will block.

It is now necessary to return to the situation where the elements which a state

transition must remove from a state p form a subset of some state p' at which the

associated operation can't be applied. Such is the case in example 4,3 where tg .ust

remove {e2} from p2 and from p3 but e2 is also in pi, a state at which g can't be

applied. In this example, however, pi also contains the only other element, el.

Therefore, t can't remove an element which is contained in p2 and p3 but not in pi.

Onty the multiplicities are different Thus, to prevent g from executing at pi, sort^

element must be removed in a greater amount than its multiplicity in pi. Here that is

possible since e2 has a greater multiplicity in p2 and p3 than it does in pi.

It was stated above that e2 must have a multiplicity of at least two in p2. In

fact, it has a multiplicity of three. Also, tg removes e2 twice rather than once and then

'•1

..

ELEMENTS 63

adds the second one bacK. This is only partly because e2 has • non-zero multiplicity

in pi. The reason why e2 has a muitrplicity in each state of one greater than it needs

to be is that it is used to perform the same function that • does in example 4.1. Here,

two processes could execute g simultaneously from state p2 otherwise. In general, if a

state transition can be used n times in sequence from a state o, then It can be

prevented from being used twice simultaneously by removing some element n times

and adding it n-1 times. The multiplicity of this element should bo 2n-l in p. Thus,

after n applications of the state t ansition, the multiplicity of this element In the

current state is n-1 and it can't be applied again.

It might be true that there are states p and q such that not only is every

element in p also in q but the multiplicity of each of these elements is at least as great

in q as it is in p.

Dofimtion: If p and q are states, then p is a »uAafo«? of q, denoted p c q, if (Ve,
e an element) the multiplicity of e in p isn't greater than the multiplicity of
e in q and (36', e' an elemenM the multiplicity of e' in p is less than the
multiplicity of e1 in q.

If p is a substate of q then it is clear that any state transition, and therefore any

operation, which can be used at p can also be used at q. Furthermore, the state

resulting from using such a transition at p must be a substate of the state resulting

from using it at q. This is true since the elements not removed from p are a subset of

those not removed from q.

It is possible to extend the concept of an ere progression to state transitions.

For every arc progression (pQ,fi)...(pn>i,fn) there is a corresponding string of state

transitions tj.,,tn. Each tj is the state transition caused by executing fj from state Pj.j.

. .

64
ELF.MENTS

Composing those st... transitions tK.n yic.ds . state transition which corresponds .0

executing the entire arc progression.

A composed state ,rans,t,on , corf.spondin6 ,0 .,,..„ W de create, in the fo,,owin6

„anner. ,. an e,ement ,s added by ., and reeved by tj where i<i, then this addition

and „^ cence, each other. A.ter .11 possib,. c.nc. ons are m.de, . -ovee

the tfs add.

„ ,he set of elements which a slate transition removes is a subset of those that

„ .dds, then any state that contains the elements lor w.ich the transition waits is a

Such a state transition can there.ore be used an arbitrary number 0. limes In

succession. Ex,.ndin8 .his observation ,0 composed stale transitions produces .he

following results.

,,■,,-,„ «A: I. a shared resource R has . ™'™*'**'fflZtm
nu„bnr of stains is finite iff there are no s.a.es P and q
p c q ?nd .here if a composed state trans.hon t:p - 0-

Proof: If there are 2 such states, then an infinite number of slates may

b0 generated by repealed use of .. On the other hand, if the number of

states is infinite, then the multiplicity of some element e must be

unbounded. Hence, there mus. be states plr..,Pi,.. such that (Vi, U D •

has a greater multiplicity in Pitl than in p, and there is a composed s.a..

...

ELEMENTS 65

transition tjtpj •♦ p^j. If Pi c pj for some i, then the theorem is proved.

Otherwise, each pj has at least one element with lower multiplicity than in

pi. Since there are finitely many elements and infinitely many Pj's, for

some element el there are infinitely many of the p^'s which have ■ lower

multiplicity of el than does pj. If the multiplicity of el in pj is K, then

these may be divided into k classes representing each velue of the

multiplicity of el less than K. One of the clsisse« mutt have an Infinite

number of members pp.-.P}',... such that the multiplicity of el is the same

for each p^ and (Vi, i fc. 1) e has a greater multiplicity in pj+1' than in Pj'

and there is a composed state transition t^pj' -»p^'. The above

procedure may then be repeated. It must terminite since there are only «

finite number of elements.

CoroHory 4.5: If there are a finite nur^r of states and if p and q are states
such that p c q and there is an arc progression from q to p, then q Isn't In
any persistent set.

Proof: There can be no arc progression from p to q.

IMPLEMENTATION

For most serial resources, the implementation based on elements will be more

complex than that based on states. However, it will be seen that this isn't true for a

special class of these resources. Before this class is presented, though, a general

implementation will be introduced.

In the previous implementation, the state was represented either by a single

....■■■■. ::v.;

ELEMENTS 66

variable or by a set of boolean semaphores With element!, the state must be

represented by a set of variables. Each of these variables is used to Keep track of

the current multiplicity of one of the elements. Likewise, for each state transition

associated with an operation, the amount of each element that it removes and adds

must be stored. There are two ways to do this, The first is to keep the amounts for

each of the elements, including a zpro for those that it doesn't remove or doesn't add.

The other way is to save only the nonzero amounts and to label each with the element

to which it corresponds. Since these labels require space, the second method will use

more storage unless most of the state transitions are sparse in that they remove only

a small percentage of the elements.

When a process attempts to execute an operaUon, each of the various state

transitions associated with the operation must be compared with the state. This is

basically the same procedure that was used in the implementation described in

chapter II. The number of state transitions involved may be fewer than the number of

states, but each comparison now requires checking the multiplicity of each of the

elements which must be removed. Thus, several variables must be compared rather

than just one. The number of comparisons which will be made in the worst case, when

the process becomes blocked, will be the sum of the number of elements which must

be removed by each of the state transitions associated with the operetion. In addition,

if the first method above is used to store the state transitions, for each state

transition tried, every element's value must first be compared with zero. When a

match is found, the identity of the appropriate state transition must be saved so that

the proper one will finish when the operation completes its execution.

ELEMENTS 67

If none of the state transitions can proceed, then the process must be put on a

waiting list. The waiting lists should bo organized as before. Either each set of states

at which an operation may be applied has a waiiing list or else there is a single list,

When an operation completes execution, the state transition resumes by adding

elements to the current state. Instead of being unique, the resulting state will be one

of several depending on which elements the state variable »Iready contained. If there

is a single waiting list, each process is checKed in turn by comparing the current state

with the elements removed by each of the state transitions associated with the

operation the process is attempting to execute. If there are several waiting lists, then

they are ordered according to the length of time that the top element has been waiting

or some other priority scheme. Using this ordering, the top procets on each list is

checked as in the one list case. When a process is found which cen continue, the

multiplicities of the appropriate elements are decremented in the current state.

The several waiting list implementation may now seem to be the same es the one

using 6 single list. The difference is that with the several list scheme, if the top

process of a list fails, none of the other processes on that list will be tested to see if

it can continue. Thus, if execution of an operation f is enabled, with a single list

several processes attempting to execute another operation g might be higher on the

list than the first process attempting to execute an f. Each of these processes will be

tested while with several waiting lists only one such process would be tested. In

addition, a further simplification can be made when several waiting lists are used.

Usually, only a fsw of the states are possible results from completing a state

transition. Some of the operations won't be able to begin execution at any of these

 ._..... .. _

ELEMENTS 68

states. Therefore, the waiting lists ot processes trying to execute these Operations

need never be checked.

Returning to example 2,11, let p = {61,61,62}, q - {6l,e2,e2), and q' - {el,el,el}

and let tf:{el,el}-♦ {el,e2) be associated with f, {el,el,e2)-> {el,el,el} and

{el,el,el}-» {el,6l,el} bf associated with g, and {el,e2,e2)-> {el,el,e2) and

{el,el,e2} -» {el,ei,62} be associated with h.

As explained before, since f may go !wlc» In a row from q' and it removes el, to

prevent two processes from executing f in parallel el should be removed twice and

added once. It must also have a multiplicity of three in q. When a process tries to

execute f, it must wait until the variable for el has a value of at least two. A process

trying to execute g must wait until the variable associated with el has a value of three

or else until el has a value of two and e2 has a value of one. There will be two

waiting lists as before. One is for processes trying to execute either an f or a g and

the other for those trying to execute an h. When t^ completes, the resulting state will

either be p or q. Processes trying to execute either an f or a g will only be allowed

to proceed if the state is p. Thus, before the list for processes waiting to either

execute an f or execute a g can be searched, the identity of the current state must be

determined, An h can be applied at either of these states, so the list for processes

trying to execute it must be checked. When an h finishes executing, the state must be

ELEMENTS 69

p and both lists will be examined for waiting processes. Likewise, when a g finises

executing, the state must be q1 and only the list for f and g will be checked.

ASSIGNir/G ELEMENTS TO STATES

The synchronization as studied so far is expressed in terms of states or else

using a notation, such as regular expressions, which can be converted into states. In

order for elements and an implementation based on the.Ti to be useful, it must be

possible to convert from states into multisets of elements.

For a resource with states pit...,pni one way to assign multisets of elements to

these states is to create n pairs of elements. For each pair »; and b; where l<i<n,

include a, in state Pj and bj in each state p: for Mj, Thus, each state contains n

elements rach with a multiplicity of one. A state transition from state Pj to state p:

can be written as {aj,b,] -» {bj,aj}. The elements bk for Mi and k^j a-e in both P| and

p: and therefore don'l have to be included in the transition. This transition may only

be used at pj since that is the only state contaimng aj. In example 4.1, pi -

{al,b2,b3,ba}, p2 - {bl,B2,b3,b4}, p3 - {bl,b2,a3,b4}, and p4 - {bl,b2,b3,a4}. The

state transitions {al,b2)-♦ {bl,a2} and {a3,b4}-■ [h3,a4) are associated with f,

{al,b3) -» {bl,a3} and {a2,b4} •♦ {b2,a4} are associated with g, and {bl,a4} -♦ {al,b4) Is

associated with h.

This assignment of elements to states leads to the worst case in that the

maximum number of state transitions will be needed, In order to reduce the number of

state transitions afsociated with an operation, some of the elements in the states at

70
ELEMENTS

which the operation can be appl.ed and in the resulting states mu.t be replaced by

other elements. To do this, two such transitions are stt equal. Thus, if {e}+U - {e'h'f

and V - V are both associated with an operation, they are set equal and the equation

is solved. This is done by le.ting e - V+IT and e' - V'+U. This substitution is made in

every state transition and also in each state. The first state transition then becomes

V+U'HJ-WUHT which reduces to the second. In example 4.1, setting

{al,b2} - {bl.a2} - {a3.b4} -» (b3.a4} yields al - {a2.a3,b4} and bl - {b2.b3.aa}. The

states are now pi- {a2.b2.a3.b3.b4.b4], P2 - (a2.b2.b3.b3.a4.b4}. p3 -

{b2.b2.a3.b3.a4.b4), and p4 - {b2.b2.b3.b3.a4.a4}. Operation f is now only assorted

with the state transition {a3.b4} * {b3,a4}. g is associated with {a2,b4} ■* {b2.a4} and

{a2,a3.b3.b4} . {b2.a3.b3.a4] which reduces to {a2.b4] * (b2.a4)1 and h is associated

with {b2.b3,a4.a4} -» {82,a3,b4,b4).

Several things must be noted about the above algorithm. First, the multiplicity

of some of the elements may be greater than one in some of the states. In the

example. b2 has a multiplicity of two in p3 and in P4. It is therefore possible that

some elements might be removed or added more than once by a state transition. In

the transition associated with h. a4 is removed twice and b4 is added twice. If such a

transition is set equal to another and an element a, which is removed or added n times

by the state transition is solved for. the result will be of the form n^ - U and n^ -

U' where U and U' are multisets of elements. But ^ or b, might have a multiplicity

whicn isn't a multiple of n in some state. Simple substitution would therefore result in

fractions of elements. This problem can be corrected by multiplying the multiplicity of

every element in every state by n. The solution to the equality of the state

transitions will then be r^a, - n*U and Ab, - n.lT which reduces to nta, - U .no

ELEMENTS 71

n*b| - U'. Now, however, the multiplicities of •, and bj in every state must be multiptes

of n.

Next, some of the elements may have a multiplicity of at least one in every state.
*

This is true of b2 and b3 above. Subtracting the minimum such multiplicity from every

state won't change any of the state transitions. The result is that the states can be

simplified. In example 4.1, the states become pi - {aZ.aS.b^bA}, p2 - {»2,b3,a4,b4),

p3 - {b2,a3,a4(b4), and p4 - {b2,b3,a4,a4). Third, both elements of a pair may now be

in a state. Thus, a4 and b4 are both in p2 and in p3.

r.i.aily, a state transition U -♦ V for some multisets of elements U and V can

always be written as k*{a(}+Lr-> ktlb^+V where \J and V are also multisets and

which contain neither a| nor bj. This can be shown by assuming thai the sum of the

multiplicitieti of the two elements in any pair is the same in every stete. This is

certainly true for the initial assignment where this sum has the value one for each

pair. Thus, if a, is removed K times from a state then bj must be added h times.

Assume that e has multiplicity m and bj has multiplicity n in state p and e has

multiplicity m' and bj has multiplicity n' in state q. If the sums are the same in every

state then m+n - m'+n'. If m>m', then in the state transition from p to q, Bj must be

removed m-m' times and bj must be added n'-n - m-m' times. If solving for BQ «nd bQ

produces a0 - U" and b0 - V" and B| (U", then the multiplicity of a, in LT must equal

the multiplicity of bj in V". When BQ and bg an» substituted for in each st?ite, since the

sum of their multiplicities are the same, the sum ot the multiplicity of Bj and bj must be

the same in eve'-y state.

It isn't always possible lu set two state transiiions equal. If it wes, then the

ELEMENTS 72

same transition could be used for every operation of a resource just by setting all of

the state transitions equal to each other. There are three situations for which state

transitions can't be set equal. The first occurs when state transitions U -► LT and

V -» V are set equal and an element a, is solved for which is in both U and V with

multiplicities m and n respectively. It must also be true that b, is in both LT and V.

The result must be that m«aj • n*{bf}+U" and m*b| - n*{aj}+V" for some multisets LT

and V". Since these solutions are mutunlly recursive, no such element must ever be

solved for. If every 3lement of U is also in V and every element of V is in U, then no

element can be solved for and the two state transitions can't be set equal.

Another situafion occurs when substituting multisets of elements V and V for

elements aj and b; respectively causes two different stf J.es to become equal. Such a

substitution can't be allowed. A check for this situation can be made as follows. If the

multiplicity of a, in a state p minus the multiplicity of aj in a state q is some number n,

then p and q will become equal if p-n*{aj}+nW - q-n»{b|}+n*V'. !f n-0 (aj has the

same multiplicity in p and q) then this check is unnecessary. If there are no elements

ef and bj from two state transitions which when substituted for don't collapse some

states into one, then these transitions can't be set equal.

A final situation occurs when making a substitution causes the intersection of the

states at which some operation can be gpplied to become contained in another state.

If such a substitution were allowed, then there would be no element that a state

transition could remove and that was in every state ?t which the operation could be

applied but not in the other state. Therefore, the operation couldn't be associated

with just one state transition, A check must be made that this condition doesn't hold

ELEMENTS 73

after the substitution for any operation which c«n be applied at more than one stete.

If for two state t ansitions every element which can be solved for causes this

condition, then the transitions can't be s»t equal

After all possible substitutions have been ■nade, it may be possible to »educe the

number of elements in each state. If the multiplicity of »ome element e' Is at least as

great as the multiplicity of an element »• in every state, then create • new element

e" - h.e'}. A substitution is made t/ subtracting the multiplicity of e from that of e' in

every state, letting e' have the sa.ne multiplicity as e, and deleting e. A substitution

must be made in the state transitions also. If e is removed (added) then e" must be

removed (added) instead and e' must be added (removed). If e' is now both added and

removed, these can cancel as before. This procedure can never cause two states to

collapse into one, but it might cause the intersection of the states at which a trtnsition

can be used to become contained in another. Therefore, a check for this situation must

be made before a substitution can be allowed.

Returning to example 4.1, every state containing »3 also contains b4. Therefore,

let al' - {a3,ba). The states become pi - {al',a2,b4), ^2 - {a2,b3,B4fb4}, and p3 -

{al,,b2,a4}, the state transition associated with f becomes {al'} -» {b3,a4}, and the

state transition associated with h becomes {b2,b3.a4,a4}-» {8l'.a2,b4}. The Mete

transition associated with g remains {a2,b4} ■* {b2,a4} and p4 still equals {b2,b3,a4,a4}.

Now every state containing b2 also contains a4 so letting b2' - {b2,a4} produces p3 -

{al',b2'}) p4 - ^^W}, the state transition {a2,b4} -* {b2'} to be associated with g,

and the state transition {b3,a4,b2'} -» {al',a2(b4) to be associated with h. It is now

possible to let {a2,b4) - a2' and {b3,a4} - bV. The result is that pi « {al'.an p2 -

ELEMENTS 74

{bl'.aa*}, p3 - {ar,b2'}, and p4 - {bl'.ba'}. The state transition associated with f is

{al'} -» {bl'}, {82'} -♦ {b2,} is associated with g, and {br(b2'} -♦ {al'^') is associated

with h.

After the synchronization relationships have been reduced as much as possible,

a check must be made to be sure that the set of elements that each state transition

removes isn't contained in some state at which the transition shouldn*t be used. If it

is, an element from the intersection of the states at which the state transition can be

used but which isn't already removed should bw both removed and added by the state

transition. This process should continue unlil the elements which it removes are no

longer contained in any states at which the transition shouldn't be used. When

including these elements n the state transition, for reasons that will become clear

later, any which have a multiplicity lound by one should be included first. Also, if any

two state transitions remove disjoint subsets of a state but their associated operations

should execute serially, a new element should be added to every state and these two

transitions must both remove and then add this element. Thus, in example 4,1, a new

element e must be added to every state which the state transitions associated with f

and g oach removes.

SINGLE TRANSITION OPERATIONS

As can be seen from examples 4.1 and 4.3, often one state transition can be

used to represent the statt- change caused by applying an operation at any one of

several states. Thus, in example '«.I the state transition {e,al} -» {e,bl} can be used to

change pi into p2 and p3 into p4. Likewise, in example 4.3, {e2,e2} ■♦ {el,e2} can be

used to change p2 into p3 and p3 into pi.

■

ELEMENTS 75

Definition; An operation is single tranütion if one slate ransition can be used
to represent exactly those state changes which the operation can cause.
A resource is singla iratmition if every operation defined on it is single
transition.

The advantage of a single transition operation is that only one transition needs to be

checked at the start of the operation. Also, the identity of this transition doesn't need

to be saved during the execution of the operation.

Trivially, every operation which Is both injective and projective is single

transition. Thus, a simple serial resource is single transition, For other resources,

though, it may not be possible to make every operation single transition. The

following re?uit shows that ever^ single transition operation must be Injective.

Theorem 4.o: 11 isn't possible for a state trartsition to take different states p
pnd p' into the same state q.

Proof: Assume that there are states p, p', and q such that some ttate

transition t:V -» V takes p a-d p' into q. Since t can be used at p ano p',

there must be multisets J and LT such that p « LkV and p' - LT+V. Using t

at p results in q - U+V and using it at p' results in q - LT+V. Therefore,

U - LT and p - U+V ■ p' and p and p' aren't different states.

If state transitions U -♦ LT from a state p to a state q and V -> V from p'' to q are set

equal using the algorithm above, the result wifl be that p and p' become equal. This

may be seen by solving for some element e with multiplicity n in U. The result is that

n*e - Lr-n*{e')+V and n*e' - U-n»{e}+V' which becomes n*e - U+V,-n»{e'}. Subtracting

the two solutions for e yields U-LT - V-V. But p - q-U+U - q-V'+V - p'. This result

can also be extended to composed state transitions. Thus, if S(p,f) - p', S(p',g) - pM,

S(q,g) - q', and S(q,,f) - p", then either f or g isn't single transition.

ELEMENTS 76

The next result shows that if a group of single transition operations execute

from a «tct-, tf-.«i resulting state will always be the same regardless of the ordering.

This is a commutative law for single transition operations

Thooram 4.7: If a state transition t takes state p into p' and state q into q' and
e state transition V faKes p into q and p' into p", then q' ■ p".

Proof: Assume that t - U -»IT and T- V -» V. Then p' - p-U+U' and p" -

p'-V+V - p-U+U'-V+V. Also, a - p-V+V and q' - q-LkLP - p-V+V'-U+LT -

P".

Thus, for the synchronization expressed by (f g h+g f i>* either f or g can't be single

trensition since f g and g f exec 'ing from the initial state result in different states.

The third result shows that if an operation is single transition and it can be

applied n times in a row starting at a state p with the result being state p for some

n>l, then the result of applying it at any state q (including p) must be q.

Thaorfitn 4.8: If a state transition U -♦ V can be used n times in a row starting at
a state p with the result being p for some nil, then U - V.

Projf; After using the state transition n times from p, the state will be

p-n»U+n»V - p. Therefore, n*U ■ n«V.

Thus, if the synchronization for a serial resource is given by the regular expression

(f+<g g))* then operation g can't be single transition. If for some m, an operation can

be applied m times at a state p with the result being state q using a state transition

U -♦ LT and it, can be applied at q with the result being p using a state transition

V -» V, then V - m*U and therefore U and V contain the same elements and It won't

ELEMENTS 77

be possible to set them equal. Thr theorem can also be extended to strings of

operations. Combining it with the commutative law shows that if executing an f from a

state o followed by executing a g results in state p and if executing a g from some

state q followed by executing an f results in a state q', then either f or g isn't single

transition.

The final result shows that if a single transition operation f can execute several

times in a row from a state p with the result being state q and another single

transition operation can be applied at both p and q then it can also be applied at any

of the intermediate states in the string of f's.

Theorem 4.9: If there are states PQ.-.Pn and a state transition t:U -+ V such that
(Vi, lsi<n) t takes pj.j into Pj and there is a state transition t' which
removes the multiset of elements LT and can be used at PQ and pn, then
(Vi, Osi<n) t' can be used at pj,

•

Proof: It must be true that (Vi, 0<i<n) Pj - p- iU+iV. Since t1 can be used

at PQ and pn, for every element e the multiplicity of e in LT can't be

greater than the multiplicity of e in either p or in pn - p-nU+nV. Let me

be the difference between the multiplicity of e in V and the multiplicity of

e in U. Thus, the multiplicity of e in Pj must be the multiplicity of e m p

plus i*me. If me > 0, then the multiplicity of e in pj must be at least as

great as the multiplicity of e in p which is at least as great as the

multiplicity of p in LT. If me < 0 then i«me t n»me and therefore the

multiplicity of e in pj is at least as great as the multiplicity of e in pn

which is at least as great as the multiplicity of e in LL Therefore, t' can

be used at p,.

ELEMENTS 78

This theorem shows t,iat for the synchronization expressed by the regular expression

(g+ffg*h)* either f or g can't be single transition. If the above algorithm was applied,

the intersection of the states at which g can be applied would be contained in each of

the states bp*ween the ♦wo f's.

Tw" restrictions to a single transition resource are allowing a transition to

remove at most one occurrence of each element and allowing a transition to remove

only one element but by any amount. These restrictions are equivalent to the

resources which can be implemented using P-V multiple and P-V chunk respectively

and placing bounds on the semaphores. Since any synchronization which can be

expressed using P and V can also be expressed using P-V multiple, the resources

which can be synchronized with P and V and bognded semaphores form « subclass of

the single transition resources.

BOOLEAN ELEMENT RESOURCES

Single transition operations need only attempt one state transition in order to

execute and therefore the same set of elements is always added to the state upon

completion. However, several variables must still be checked when a process tries to

«>.9',ute such an operation and also whenever an attempt is made to remove it from a

waiting list. For a subclass of the single transition operations, though, the

implementation can be changed so that only one variable must be checked to determine

:f the operation may start execution.

Dofinition: A state trdnsition is boohtm dtmmt if every element which it
removes has a multiplicity of at most one in any state. A shared resource
is bool«an olemtrnt if it is single transition and every element has a
multiplicity bounded by one..

ELEMENTS 79

Thus, every state transition associated with an operation of a boolean element

resource must be boolean element. The resource m example 4.1 may easUy be seen to

be boolean element.

If a state transition is boolean element, then it is always possible to alter the

implementation by adding new elements such that the multiplicity of only one element

needs to be checked. Assume that the state transition removes n elements. Create a

new element e such that at any time its multiplicity is the sum of the multiplicities of

these n elements. Thus, whenever e of these elements is added to the state, the

multiplicity of e is increased by one and whenever one is removed, the multiplicity of e

is decreased. Since the multiplicity of each of thes« elements is bound by one, their

sum, and therefor the multiplicity of e, is bound by n. Also, the multiplicity of e will

reach n exactly when all of these elements are part of the state. The state transition

now only must wait until the multiplicity of e equals n. At such a time, the rest of the

elements which it must remove are guaranteed to be part of the state in the

appropriate multiplicity. A simplification can be made by deleting any element which

no state transition waits on.

•
Returning to example 4.1, let el - {e,al}, e2 - {e.aZ}, and e3 - {bl,b2}. The

state transition {e,al,el,el,e2} -♦ {e,bl,el,e2.e3} only needs to wait for the multiplicity

of el to be two and corresponds to f, {e,a. -?e2} -* {e,b2,el,e2,e3} only needs to

wait for the multiplicity of e2 to be two and corresponds to g, and

{bl,b2,e3,p3} -+ {al,a2,ei,>?2} only needs to wait for the multiplicity of e3 to be two

and corresponds to h. Since no state transition wails for e, al, a2, bl, or b2, these

elements may be deleted, The result if that pi - {el,el,e2,e2), p2 - {el,e2,e2,e3},

ELEMENTS 80

p3 - {el,el,e2,e3}, and p4 - {el,e2,e3,e3). The operation f corresponds to the state

transition {61,61,62} -> [6l,62,e3) but it doesn't need to check e2, g corresponds to

{el,62,e2}-♦ {el,e2,63} but doesn't heed to check el, and h corresponds to

{63,63} -♦ {6l,e2}.

An alternate simplification can also be made to the Implementation of a boolean

element resource. The state can be represented with a string of bits. Each zero bit
■

means that the corresponding element is present and a one means that it isn't. To

check for a group of elements a mask is used. Every one in the mask indicates an

element which is needed. If the result of performing an AND operation between the

mask md the state is zero, then the state transition has succeeded. To remove the

appropriate elements from the state, the bit string is ORed with the mask. To add

elements to the state, another mask with a zero for 68ch element being added and a

one for the rest of the elements is used. This mask is ANDed to the current stcte bit

string.

Since the implementation of a boolean element resource involves a fairly small

amount of overhead, it would be reasonable to restrict a programming system to such

resources. To help make such a restriction, a notation which corresponds to this class

of synchronization is desirable.

Definition. A multiple regular orprossfon is a set of regular expressions. It is
remricted if every member of the set is restricted.

A multiple regular expression is interpreted such that the synchronization expressed

by each of the member expressions must b« satisfied.

Example 410: The restricted multiple regular expression {(f(gxh))*,(g h)*}

ELEMENTS 81

means that execution of f must alternate with the execution ot g or h and
that execution of g and h must alternate. This is the same synchronization
as that expressed by the regular expression (f g f h)f

It will now be shown that the restricted multiple regular expressions correspond

exactly to the boolean element resources.

Thaorcm 4.11: A resource is boolean element iff the synchronization on it can
be expressed with a restricted multiple regular expression.

Proof: If a resource is boolean element, then for every element e ',reate

a new element e' and inc ude e' in every state which doesn't contain e.

The state transitions must be changed so that if e is removed but not

added then e' must be added and if e is added but not removed, then e'

must be removed. A restricted regular expression will be created for

eve^y pair of elements e and e'. Assume that ope'ations f^...,fj remove e

and add e', operations fj+i.-.f; remove e' and add e, operations fj+i.-^K

remove and add e, and the rest of the operations neither remove nor add

e and e'. If e is in the initial state, then the regular expression can be

writun as (fj+l+...+fk+((f1+...+fj){fj+1+...fj)))* and if e' is in the initial state,

then the regular expression can be written as

((fj + 1+...+fjMfj+i+...+fk)*(fi+.+fi))*- If a resource can be expressed as a

restricted multiple regular expression, then it forms a set of simple serial

resources. Assume that the states of each of these resources are disjoint

and use them as the elements of the complete synchronization

relationships. The initial state is composed of the elements representing

the initial states of the various simple sertst resources. Since each of

ELEMENTS 82

these resources can only be in one stete at a time, the multiplicity of each

element is bound by one. Each operation removes the elements

corresponding to the states at which it could be applied and adds the

elements corresponding to the states which could result from its execution

in the various simple serial resources. Since there is only one state at

which it can be applied in each such resource, it must be single transition.

The restricted multiple regular »xpressron {(f h)*,(g h)*,(f+g)*) can be used to express

the synchronization of (he resource in example 4.1. The expression In example 4.10

corresponds to states pi - {al,a2}, p2 - {bl,a2}, p3 - {al,b2}, and D4 - {bl,b2} and

state transitions {al} -> {bl} associated wi'.n f, {bl,a2} ■♦ {al,b2) associated with g, and

{bl,b2} -» {aljte} assoc'ated with h.

While restricted multiple regular expressions can be used to express the

synchronizations for the boolean element resources, trying to understand several

expressions simultaneously is harder than understanding a single expression. In

particular, it 's easier to include deadlock iltuetion». An example is {(f g)*,(g f)*}. No

process will ever be allowed to execute either an f or a g. In order to help prevent

such situations from occurring, a compiler for a language which allows synchronization

to be expressed using multiple regular expressions would need to create the states

and successor function. States at which no operation can be applied and the

auxiliaries of each persistent set then can be found. If there is no state in any of the

subexpressions at which no operation can be applied but there is one for the resulting

synchroniz». on relationships, then a warning should be given. UKewise, If for every

expression that some operation is in it is an »■jxiliary of every persistent set, then it

should be in every persistent set of the result.

CHAPTER V

CONCURRENT RESOURCES

When several processes can operate on a shared resource in parallel, usually

each process may he considered to be operating on a different part of the resource,

each with its own set of operations and synchronization relationships. For example,

consider a ring of buffers which ST veral processes, may acces$ simultaneously. Each

buffer in the ring may be thought of as a unique resource which may only be accessed

by one process at a time with the operations insert and remove alternating. However,

sometimes it isn't possible to consider a resource which can be operated on in parallel

as beirig composed of several independent parts,

Example b.l: While a disk transfer is occurring, the process which controls the
disk can be selecting the next transfer. The new requ&st may not be
passed to the disk, though, until both the disk has finished its transfer and
the selection is completed.

In actual practice, the disk transfer resource will be more complex, A delay operation

which is part of a clock resource will be used to insure that a selection isn't made until

the transfer has almoii completed. The selection operation first calls this operation ,

before it makes the selection.

Another example occurs when several processes are allowed to read or copy a

file simultaneously. However, reading and copying are r~f allowed while the file is

being written.

Definition: A concurrent resource is a shared resource on which it is possible
for more than one process tq operate at a time.

■■■

84
CONCURRENT RESOURCES

The final synchronization to be studied is that of concurrent resources.

PROLOGUES AND EPILOGUES

So far, an operation has been viewed as a group of state transition« only one of

which is used each time it is executed. This was icceptable since the resource state

couldn't be changed during the execution of the operation by another process starting

or completing execution. Therefore, the execution of an operation could be viewed as

being instantaneous. When processes can operate on a resource in parallel, though,

this is no longer true. In this case, the start and end of an operation must be treated

as sepa ate state transitions.

It is possible to handle concurrent resources within the mode» vi3veloped for

serial resources by introducing for each operation which must be synchronized a pair

of null operations which have no effect on the resource. One of the null operations

will be called before execution of the operation and the other wilt be called after

execution. The synchronization is then expressed in terms c» the null operations which

must be used serially.

Definition: The prologs of an operation f defined on a concurrent resource is
a null operation which must be called by f at the start of its wwution.
The epilog« of f is a null operation which must be called by f at the end
of its execution. A perüogw is either a prologue or an epilogue.

Since the perilogues must be used serially, corollary 2.5 shows that the

synchronizaiion for a finite state concurrent resource can be expreased as a regular

expression of the perilogues.

CONCURRENT RESOURCES 85

A process must wait to execute an operation until its prologue can be applied at

the current state of the resource. The state change associated with the prologue is

then made without entering a null stf*«». This can be done since the prologue has no

code and may be thought of as executing instantaneously If elements are used, this

means that a state transition removes and adds the appropriate elements

simultaneously without entering some intermediate statt. When the operation finishes

execution, some state change corresponding to the epilogue must be made. Once

again, this state change can be made instantaneously,

While the prologue of a,1 operation may block until the resource enters a state

at v/hich it may be applied, It shoutd always be the case that an epilogue wi;< be able

to be applied immediately upon completion of the ccresponding operation. When the

epilogue is attempted, the operation has already made all of its accesses to the

resource and reliability can't be improved by a delay at this point. Tl before, the

epilogue must be able to be applied at every slate which can result from the prologue

in case no other operation starts or stops during execution of the operation. In

general, if an epilogue can be applied at a state p and some other perilogue can also

be applied at p with the result being state q, then the epilogue must be able to be

applied at q.

In the implementation of concurrent resources, the waiting lists must be checked

more often than they were in the implementation of serial resources. When a process

is allowed to execute an operation, it causes a state change to take place. Therefore,

some of the processes which are blocked and on a waiting list may now be able to

execute. A check of the waiting processes must be made. This procedure continues

CONCURRENT RESOURCES 86

until none can go. Thus, the waiting lists must be checked whenever an operation

start« and whenever it finishes,, twice as often as for a serial resource.

Using prologues and epilogues, concurrent resources may be implemented using

the method described in chapter II based on the successor function. However, even

simple resources will have a complicated implementation. On the other hand, some of

these resources will turn out to be boolean sitment and can be implemented simply

using the method described in chapter IV.

Example 5.2: Consider a modification to example 4,1 which allows operations f
and g to be executed in parallel. There are now ten states with S(pi,fp) -
p2, S(pUD) - p3, S(p2,te) - p4, S(p2,gD) - S(p3,fp) - p5, S(p3.ge) - p6,
S(p4,gp) - S(p5,fe) - p7, S<p5,ge) - S{p6,fp) - p8, S(p7,ge) - S(p8,fe) -
p9, S(p9,hp) - plO, and S(plO,he) - pi.

The notation fp and fe is used to respectively indicate the prologue and
epilogue of operation f. Using elements, the states become:

Pi - {al,a2}
p3 - {al,c2}
p6 - {al,b2)

p2 - {cl,a2}
p5 - {cl,c2}
p8-{cl,b2)
plO - {e}

and the prologues and epilogues become:

{a2} - (c2} f :{al}-Mcl}
fe: {cl)-♦ {bl) gj:" {c2} - {b2}

p4 - {61,82}
p7 - {bl,c2}
p9-{bl,b2}

hp: {bl,b2) •* {e}
h^: {e] -* {al,a2}

 .

CONCURRENT RESOURCES 87

Each of the perilogues fp, fg, g_, and ge may be applied at three states and none is

projective. Thus, when an operation is called, three states must be compared with the

initial state. When it finishes, this comparison must be done again to determine the

resulting state. On the other hand, the resource is boolean element and each perilogue

is only associated with one state transition.

This example is essentially the same as example 5.1. The operation to select the

next disk transfer corresponds to f, the disk transfer itself corresponds to g, and the

issuing of the transfer command corresponds to h. The initial state for this example

must be p6 which allows a command to be selected but requires that the command be

passed to the disk before a transfer starts.

Another example of a synchronization problem involving a concurrent resource

which is boolean element but is complicated when described using states and the

successor function is the famous "Five Dining Philosophers" problem [068].

Example 5.3: The states of the "Five Dining Fhilosopher" problem are qO which
corresponds to no philosopher eating, ql, q2, q3, q4(and q5
corresponding respectively to just pi eating, just p2 eating, just p3
eating, just p4 eating, and just p5 eating, and ql3, ql4, q24, q?5, and q35
corresponding respectively to pi and p3 eating, pi and p4 eating, p2 end
p4 eating, p2 and p5 eating, and p3 and p5 eating In the following
diagram, going along an arc in the uirection of 'Ihe arrow is the prologue
of the operation and going in the opposite direction is the epilog le e»f the
operation.

CONCURRENT RESOURCES 88

q35<—

This resource can be shown to be shown to be boolean »lement by
assigning elements to states as follows:

qO - {eO,e 1^2,63^4}
q3 - {e0(el,e7,efl)
q4 - {60,61,62,68}
q2 - {e0,66,63,e4)

ql - {e5,e2,e3,e4}
ql3 - {e5,e7,e4)
ql4 - {65,62,68}
q24 - {e0,66,68}

and by using the following prologues and epilogues:

pi_: {eO,eU -» fsB) p2p: fel,62} -» {e6}
p4p: {63,64} -* {e8) p5p: ie0,64) -» {69}

Each epilogue fe is the reverse of the prologue L.

q5 - {el,e2,e3,e9}
q35 - {el,e7,e9}
q25 - {66,63,69}

p3D: {e2,e3} -► {e7}

Once again, none of the periloguer is projective, but a simple implementation is

possible based on the elements.

For shared resources, a process might call any of the operations at any time.

Thus, the resource can be in any of its states when an attempt is made to use an

operation if ttie resource is serial or to use a prologue if the resource is concurrent.

However, there are some states at which epilogues won't be attempted. These states

correspond to the times when no process is executing the operation associated with

them. Since there will never be an attempt to use them, no harm can be caused by

defining a resulting state if they were used. Because of this fact, changes can be

CONCURRENT RESOURCES 89

made to the algorithm in chapter II which finds equivalent states and to the algorithm

in chapter IV which converts states into multisets ol »lemnts.

When finding equivalent states, initially the states were divided into sets of

similar states. When perilogues are used, this division should only be based on the

prologues which may be applied. This is the same as allowing each epilogue to be

applied at every state. When determining if two states within a set are related, any

epilogue which is undefined at one of these itates may be disregarded, Of course, this

means that the relationship is no longer transitive. For examole, if states pi, p?, and

p3 are in set SI and the epilogue |or operation f is undefined at pi, takes p2 into set

S2, and takes p3 into set S3, then pi may be related to both p2 and p3 but p2 and p3

aren't related. When SI is divided, pi will be put in both of the new sets S4 and S5

containing p2 and p3 respectively. Now if some perilogue g takes a state p4 into pi,

then p4 can be related to states which g takes into either S^ or S5. When this

procedure is completed, a perilogue takes a set of states into each set into which it

takes all of its member states. If it is an epilogue which is undefined for each state in

the set, then it is undefined for the set. If ther> is a set of states T such that

whenever a perilogue can result in T it also results in some other set, tfvn T can be

deleted. If a perilogue still takes a set into mor«» than one resulting set, one of these

resulting states is chosen.

When converting states into elements, it isnt important that the intersection of

the states at which the epilogue of an operation may be applied not be contained in

any other state. There is no problem if an epilogue can be applied at any of the other

states. Thus, this check is only necessary for the prologues. A check still must be

made to make sure that two states don't become equal.

..ii,i»miiiipp,u.jiL„u »i^wppijpiPIIP^IIpiiip^'wfJM^wfFi'i'.tiiiijyiiw

90
CONCURRENT RESOURCES

REQUIRE AND RELEASE TRANSITIONS

While it was required that the epilogue must be able to be applied immediately

upon completion of execution of an operation, it may be associated with more than one

state transmon. Thus, several may have to be tried before one is found that can be

used. I.' the state trans,tion used for the epilogue is unique given the one used for the

prologue, then no search is necessary. In that case, all of the elements removed by

this state transition must be included in every state in which the resource can be

during the execution of the operation.

with it which il USKI •! Ih« •"<! »I "KMon ol ttn "'r,",0',a'"»
o^rln i. uni,U.ly det n.d by th. .ft. t on which w« uS.d

at the start of execution.

The epilogues for ea.h operation in examples 5.2 and 5.3 may be seen to have only

one final transition and therefore they trivially must be unique terminator.

For a state transition U ^ V. as explained in chapter IV there are two reasons

why an element might be in both U and V. The first is that it prevents several state

transitions from being used in paralial. With concurrent resources, however, each

state transition may be considered to be instantaneous and nothing else can happen

while one is being .sed, The second reason i, that this element I. removed to prevent

the state transition from being used at some state where it shouldn't be. If the state

transition is associated with a unique terminator epilogue, though, it should be able to

be used at any state at which it'is attempted. Thus, if a state transition U-V is

associated with a unique terminator epilogue, then U and V will be considered to be

disjoint.

II IMtewit^KMiiniii^lii^älCjäraiBiiiMia

CONCURRENT RESOURCES
91

If an operation f has a unique terminalOr epilogue f, and there is some element

e such that only state transitions associated with fe remove e, then e isn't needed.

This can easily be seen since the presence or absence of e has no effect on whether a

state transition assoc.ated with any other perilogue can be used at a state and it can

only allow the state transitions associated with fe to be used at more states than

before. In example 5.2. cl, c2: and e can be deleted. In example 5.3, elements e5(»6,

e7, e8, and e9 can be deleted.

It may now be observed that a state transition might not remove any elements

or it might not add any elements.

Definition: A require tramition is a state transition in which a set of elements is
replaced by the empty set. A rdensa tramitwn is a state transition in
which the empty set of elements is replaced by a set of elements.

A release transition may .be used at every state. If one is associated with a prologue,

then by theorem 4.4 there must be an infinite number of states. In examples 5.2 and

5.3. after each element is deleted which can be, every state transition associated with

a prologue is a require transition and every one associated with an epilogue is a

release transition.

A simplification to the implementation can be made when a require transition is

used. If it is associated with a prologue and it was successfully used when the

oper ation was called or else it is associated with an epilogue, then none of the waiting

processes could execute before this transition so certainly none car. txswuw after it

and they don't need to be checked. If it is associated with the prologue of some

operation called by a process which was blocked by the call, then any waiting lists

—nwHi nMMMiiiiMiiMiHiii

CO^X:URRENT RESOURCES 92

which have been checked during the current search and failed will still fail and

therefore don't need to be checked again.

The following results help determine if it is possible for a state transition to be

either a require or a release transition.

Theoram 5.4: If t:V -> {} is a require transition which can be used at a state p,
then any state transition t' which can be used at the resulting state p-V
can also be used at p and t' commutes with t.

Proof: Let U - p-V. Let the state which results from using V at U be q.

Thus, using r at p - UW results in state q+V. Using t at this state must

result in q.

Thus, if a require transition is associated with a prologue then every perilogue which

can be used immediately after it is, except possibly the epilogue for that operation,

must also be able to be used before it. Furthermore, they must commute. A similar

result can also be shown for release transitions.

Thaorom 5.5: If t:{} -♦ V is a release transition which is used at a state p and t'
can also be used at p wtth the result being state q, then t and t' commute.

Proof: The result of using t at p must be p+V, but since t1 can be used at

p, wh-h is a substate of the new state, it can also be used there with the

result being q+V. Using t at q also produces q+V.

Thus, if a release transition is associated with an epilogue, {hen every perilogue which

can be used at some state where it can must commute with it.

II

CONCURRENT RESOURCES 93

MULTIPLE REGULAR EXPRESSIONS

If an operation is such that each state transition assodated with its prologue is

a require transition and each state transition associated with its epilogue is unique

terminator and a release transition, then a set of elements is removed from the state

of the resource at the start of execution and another set of elements is added at the

completion. In this manner, each require transition associated with the prologue and

the release transition of the epilogue which it uniquely determines may be united to

form a state transition which may be associated with the operation itself liK© the state

transitions whivh were used for serial resources.

Definition: An operation defined on a concurrent resource is united transitional
if every state transition associated with its prologue is a require
transition, the epilogue is unique terminator, and each state transition
associated with the epilogue is a release transition. A concurrent
resource is united transitional if every operation defined on it is.

United transitional resources have the advantage that the synchronization can be

expressed in terms of the operations without concerning the programmer with

prologues and epilogues. The concurrent resources of examples 5.2 and 5.3 are united

transitional.

If a resource is united transitional, then the classifications described in

chapter IV may be used. For instance, the resources of examples 5.2 and 5.3 are

single transition since they are united transitional and the prologue of each operation

is only associated with one stats transition. In addition, every element in each of

these resources has a multiplicity bounded by one. Thus, they «re both boolean

element. By theorem 411, the synchronization for the resources in these examples

CONCURRENT RESOURCES 94

may therefore be expressed using restricted multiple regular expressions. The

expression for example 5.2 is {(f h)*,{g h)*} and the expression for example 5.3 is

{(p 1 +p2)*,{p2*p3)*,(p3+p4)Vp4+p5)*,(p 1 *p5)*).

It may be seen by the above discussion that multiple regular expressions may

be used to express the synchronization for some concurrent resources. It would be

useful to know for exactly what class of synchronization they can be used. First,

though, it is necessary t® define what is meant by two perilogues being parallel at a
>

state.

Definition: Two perilogues »re ptualM «t a state p if they both may be applied
there and they commute.

It is also necessary to introduce what is meant by two perilogues being sequential.

Dofinition: Perilogues f and g are »oq-iwHliol if any of the following are true.

1. There is a state where both f and g may be applied but at which they
aren't parallel.

2. There are states p and q such that f takes p into q and g can be
applied at q but not at p.

3. There is no state at which f and g are parallel.

It should be noted that a state was part of the definition of parallel perilogues but

none was part of the definition of sequential perilogues. If there are states p and q at

which perilogues f and g may both be applied, then it is possible that f and g commute

at p but don't at q. Thus, they are parallel at p but are also sequential.

A natural restriction is to require that if two perilogues are parallel at some

state then they aren't sequential. Parallelism may then be thought of as « symmetric

relation.

maam mumm ' L»,».»!...»^-.—■..-

CONCURRENT RESOURCES 9^

Definition. A concurrent resource Is rdationally paralM if each of the
following hold.

1. The prologue of each operation is parallel at each state p where ■■
may be applied with every other perilogue which may be applied at
the resulting state p' except for its epilogue.

2. The epilogue of each operation is parallel at each state p where it
may be applied with every other perilogue which may be applied at

P

3. Sequential perilogues aren't parallel at any state.

4. The prologue and the epilogue of an operation can't both be applied
at any state.

Conditions 1 and 2 basically insure that a relationally parallel resource must be united

transitional. A proof that this is really true will re shown below. Condition 3 Is

explained above. Condition 4 requires that no twv processes may simultaneously

execute an operation. This may be seen from the following lemm^.

Lemma 5.6: If a resource is relationally parallel then for each operation f the
use of its prologue and its epilogue must alternate.

Proof: The prologue must be used before the epilogue. If the prologue

fp may be used at state p with the result being state q and

(q^l)...(qn_i,gn) is an arc progression such that (Vi, Ui<n) gj i< fel then

(Vi, l<i<n) fe can be applied at q, and therefore fp cant be. Also, fp can't

be applied at q. Tbus, (Vi, l<i<n> g, t fp.

It is now possible to show that there are some finite cKe concurrent resources

for which the synchronization can't be expressed using a multiple regular exp-ess :>n

Theorem 5.7: Every concurrent resource for which the synchronization can be
expressed using a multiple regular expression is both united transitional
and relationally parallel.

i

i

C0NCURREN1 RESOURCES
96

Proof: A multiple regular expression may be implemented by converting

each of the member expressions into a finite automaton, each with a

disjoint set of states. The resource state will be represented by one

state from each of these automata. When an operation starts e«ecuting,

each of the automata corresponding to expressions In which it occurs must

be in a state at which the operation may be applied, Tue states of these

automata are set to the null state until the operation finishes and then are

each set to new states based on the starting states. Thus, it mey be seen

that every state transition associated with the prologue is a require

transition, each associated *ith the epilogue is a release transition, and

the epilogue is unique terminator. Thus, the resource is united transitional

and by theorems 5,4 and 5,5 conditions 1 and 2 of the definition of

relational parallel hold. If perilogues for two operations are parallel at

some state, then both operations may be able to execute concurrently and

they can't both be included in the same expression. If the prologues for

both operations may both be applied «t the same state and they aren't

parallel, then by theorem 5.4 neither prologue may immediately follow the

other. Thus, they must compete for the state of one of the automata

which can't be true since they aren't in the same expressions. Condition

4 holds since the epilogue of an operation can only be applied when each

of the appropriate automata are in the null state and the prologue can't

be applied then.

CONCURRENT RESOURCES 97

PROCEDURES

It is sometimes necessary that several operations defined on a resource perform

the same suboperaiion. For example, if there are operations defined on a stack to pop

the top element off and another to return the top element but to leave it on the stacK,

both operations must first test to see that the stack isn't empty. It is standard

programming practice to use a procedure for this purpose.

For a serial resource, no two operations may execute simultaneously so there

can be at most one call on !he procedure in progress at any given time. Any other

synchronization of the procedure must also be contained in the synchronization of the

calling operations. This is because the procedure itself can't be included as an

operation in the synchronization of the resource. Otherwise, since the calling

operation is executing, the call will cause the procedure to block. The result is a

deadlock.

An alternative method which can be used for serial resources which allows

procedures to be synchronized is to define the operations as sequences of procedures.

For example, if an operation f uses a procedure g, it might be written as f - sf;g;tf

where sf and ff are also procedures and can be included in the synchronization of the

resource along with g.

For a concurrent resource it may be possible for two cperations to

simultaneously call a procedure. If only one invocation of the procedure can be

allowed at a time, it must be included in the synchronization for the resource. In this

case, it must be possible for both the calling operation and the procedure to be

CONCURRENT RESOURCES 98

executed at the same time. This will only be true if there is a composed state

transition from each state which can result from the prologue of a calling operation to

a state at which the procedure can be applied, Also, these composed state transitions

shouldn't contain the final transition of the calling operation. If this condition doesn't

hold, it will be possible for a calling operation to start and become deadlocked when

the procedure is called.

When an operation calls a procedure which is synchronized, it is possible to

drop the restriction discussed earlier that the final transition of an operation can be

applied at every state which can occur during the execution of the operation. In this

case, the restriction only needs to be enforced for all of the states which the resource

can be in after the last such procedure has been executed since the operation can't

complete until this occurs.

CHAPTER VI

CONCLUSION

In this research, the problem of synchronizing operations defined on a shared

resource was studied. The approach was to express the sequences of operations

which are allowed on the resource by creating synchronization relationships consisting

of a group of states and a successor function. An alternative model was also given in

which states were represented as multisets of elements and the state changes caused

by the execution of an operation were expressed as state transitions.

A series of restrictions to this model was presented to isolate classes of

synchronization due to implementation or notation. The first restriction was that only

those resources for which the synchronization could be expressed using a finite

number of states was studied. The next restriction was to require that the successor

function be injective with respect to eac!' operation. Another class, called single

transition, was shown to be a subclass of the injective resources. A further restriction

of the single transition resources produced the boolean element resources. A subclass

of the boolean element resources was formed by requiring that the successor function

be projective with respect to each operation. These resources were catled simple

serial. The final restriction was to disallow Z expressions from the initial state to any

persistent set entry state. This leads to the restricted regular expressions described

in chapter III.

An open question which was left unanswered was the characterization of the

i i.riiiMgmilMii3i,^iafa—'"■ -"■-' -:^;..^l^ .^^.^ ^■*1^^...

CONCLUSION 100

single transition resources in terms of restrictions on the successor function. These

resources were shown to be injettive and several other properties were shown to

hold. However, these restrictions aren't sufficient. The problem is that the restriction

is dependent on the sequences in which an operation can occur rather than just on the

states at which it may be used.

An extension was made to this model to allow concurrent resources to be

handled. It was shown that synchronization couldn't be expressed as sequences of the

operations but that prologues and epilogues were needed. Three different levels of

systems were looked at. The firet restricts the model to only • finite number of ttates.

The next allows only relationatly parallel resources. The final restriction elso requires

that the resource be boolean element.

The method which can be used to implement synchronization wns shown to be

increasingly simple as the model was restricted. Implementations were given for all

finite state resources, the single transition resources, boolean element resources, and

simple serial resources. The overhead required to decide if an operation conid start

execution was discussed. The differences between one waiting list and several in

relation to the difficulty of a search when an operation completes execution was also

shown.

The problem of deadlocks was briefly discussed when it was shown that every

permanent operation must be an auxiliary of every persistent set. However, this won't

prevent deadlocks from occurring. They are also dependent on the sequences of calls

made by each process. Consider, for example, two resources with synchronization

specified by the restricted regular expressions (e f)* and (g h)* respectively. Assume

CONCLUSION
101

that these resources are used by two processes, one of which calls f and then g and

the other which calls h and then e. A deadlock will result. In general, the solution to

this problem isn'» computable. Even if the processes are restricted such that it is

deudable whether or not a deadlock will occur, it would involve checking the code of

each process which uses some shared resource.

One of the reasons for this study was to provide a means with which various

methods of synchronization could be classified. It was shown that the class of

resources which can be synchronized by using boolean semaphores such that at most

one may be positive at a time and requiring that an operation do a P on one before it

starts and a V on one when it completes corresponds to the simple serial resources.

Allowing P-V multiple but still allowing only boolean semaphores corresponds to the

boolean element resources. Finally, combining P-V multiple and P-V chunk such that an

operation may start by decrementing several semaphores by values which may be

greater than one but requiring that the semaphores be bounded corresponds to the

single transition operations.

Various forms of regular expressions were also looked at. Restricted regular

expressions were shown to correspond to the simple serial resources without Z

expressions, restricted multiple regular expressions were shown to correspond to the

boolean element resources, regular expressions themselves were shown to correspond

to the finite state resources, and multiple regular expressions were shown to be a

subset of the relationally parallel resources.

A possibility for further work is to study other modifications to regular

expressions. This would involve discovering the necessary restrictions to the model

CONCLUSION
102

and then provmg that the n.w form of rtfultr expression end the restriction

represent the same synchronization. One possibility is the parallel regular expression

which allows the notation R/ZR' where R and R' are regular expressions. The meaning

is that a sequence of operations allowed by R and a sequence of operations allowed

by R' can be executed concurrently. The advantage over multiple regular expression«

is that all of the synchronization is contained in one expression and not spread across

several, thus improving understandability. There is also a disadvantage in that some

synchronization which can be expressed using restricted mult.ple regular expressions

can't be expressed using parallel regular expressions. For example, consider

{(a c>*,(a d)*.(b c)*}. Initially, a and b can be executed simultaneously. After they have

each finished, c can be executed and then a and b again. This can be expressed with

((a//b)c)*. U isn't possible to add d to this expression so that it follows a and

executes in parallel with b and c. It might also be desirable to restrict these

expressions in some manner similar to restricted regular expressions In order to

simplify the implementation.

Another way in which regular expressions could be altered would be to allow

parameters in some manner. For example, the s.ze of a stack influences the number of

states needed to synchronize the operations PUSH and POP and therefore it affects

the regular expression used. When a type STACK is defined, it shouldn't be restricted

to a specific size. This* decision should be postponed until a specific instance is

declared. One suggestion [Ha75] is to allow the notation (f-|>". This it similar to the

notation f+g except that the number of times that f has been executed at any given

tine minus the number of times that g has executed must be neither negative nor

greater than n. Thus, the synchronization for the stack can be expressed using the

expression ((PUSH-P0P)n)*.

COrJCLUSION 103

Another extension of the work described here is to allow an infinite number of

states. Considering each state and listing the values for the successor function for

such a resource is impossible. However, usmg elements to construct states and

associating operations with state transitions yields a possible solutior. *o this problem.

It wculd still be necessary to restrict the resources such that there are only a finite

number of elements and each operation can only be associated with a finite number of

state transitions. This is a reasonable restriction since most infinite state resources,

such as an unbounded stack, are usually implemented using an unbounded counter or

semaphore which is then replaced by an element in the model,

The use of modified regular expressions in a resource definition to describe

synchronization is an attempt to make this synchronization more understandable and

the resource more reliable. Hopefully, a high level progrgmming language containing

some form of regular expressions, which was selected based on this study, will be

developed. This research could then be considered to have made a small contribution

to the area of reliable software.

,

 _. ■■liitMüiii

BIBLIOGRAPHY

[ALI72] Aho, A. V. and J. D. UNman, The Theory of ParsinE. Translation, and Compiling.
Vol 1: Parsing, Prentice-Hall, Inc. Englewood Cliffs, NJ, 1972.

[B74] BeKKers, Y., "A Comparison of Two High Level Synchronizing Concepts,"
Queen's University of Belfast Report, 1974,

[BH72] Brinch Hansen. P., "Structured Multiprogramming," CACM 15,7 (July 1972),
pp. 574-578.

[CHfl74] Campbell, R. H. and A. N. Habermann, "The Specification of Process
Synchronization by rjath Expressions," International Symposium on
QperatinR Systems Theory and Practice. IRIA, Paris, April 1974,
pp. 93-106.

[CHP71] Courtois, P. J,, F. Hevmans, D. L. Parnas, "Concurrent Control with "Riaders"
and Writers"," CACM 14,10 (Oct 1971), pp. 667-668.

[D68] Dijkstra, E. W., "Cooperating Sequential Processes," Programming languages.
F. Genuys, Ed., Academic Press, New York, 1968, pp. 43-112.

[F75] Flon, L, "Program Design with Abstract Data Types," Carnegie-Mellon
University Report, June, 1975.

[Ha72] Habermann, A. N., "Synchronization of Communicating Processes," CACM 15,3
(March 1972), pp. 171-176.

[Ha75] Habermann, A. N., "On the Timing Restrictions of Concurrent Processes,"
Fourth Texas Conference on Computing Systems, Austin, TX, 1975.

[Ho74] Hoare, C. A. R., "Monitors: An Operating System Concept," CACM 17,10 (Oct
1974), pp. 549-557.

[HU69] Hopcroft, J. E. and J. D. Ullman, Formal Languages and Their Relation to
Automata. Addison-Wesley Publishing Co, Reading, MA, 1969.

[K69] Knuth, D. E., Ihe Art Ql Computer Programming. Vol 2: Seminumerical
Algorithms, Addison-Wesley Publishing Co, Reading, MA, 1969.

[173] Lipton, R. J., "On Synchronization Primitive Systems," Ph.D. Thesis,
Carnegie-Mellon UniVersity, June 1973.

[P71] Patil, S. S., "Limitations and Capabilities of Dijkstra's Semaphore Primitives
for Coordination among Processes," Project MAC, Computational
Structures Group Memo 57, Feb 1971.

ifcl.liitiii«rtSa'«^H»i-a^^---- . ^ ,„,..^;,jJ,i,,^0,a»K-..,..»i... JaaaaaMtjam^.,....,,.....,!..,.■.-■;.. .. „ajmOaili

BIBLIOGRAPHY 105

[PKT731 Peterson, W. W., T. Kasami, and N. Tokura, "On Capabilities of While, Repeat,
and Exit Statements," CACM 16,8 (AUR 1973) pp. 503-512.

[VL72] Vantilborgh, H, and A. van Lamsweerde, "On an Extension of DijKstra's
Semaphore Primitives," Information Processing Letters 1 (1972),

pp. 181-186.

[W72] Wodon, P., "Still Another Tool for Synchronizing Cooperating Processes,"
Carnegie-Mellon University Report, Aug 1972.

;V1

 «^^«^

APPENDIX

This appendix contains proofs of theorems from chapter III.

Thaortim 3 1: For a restricted regular expression R with the corresponding
finite automaton (K,Z,8,p,F) the following properties are true.

Proprrty 3.1.1: Either R is final loop or (Vq d F) (Vf < 2) «(q,f) is dead.

Propany 3.1.2: (Vf (2) (Vq.q' (K) either «(q.f) or «(q'.f) is dead.

Property 3.1.3: (3f i I) «(p,f) isn't a dead state.

Property 3.1.4: Either R is initial loop or (Vq < K) (Vf (D «(q.f) t p and
p isn't in F.

Property 3.1.5: If R is simple (not selection) final loop, then there is
only one state in f.

Furthermore, let (K,Z,{,p,F) be the finite automaton corresponding to R and
{K\r,i\p\F) correspond to R'. Then (K-F,I,6i,p,{p}) corresponds to R*,
either ((K-F)uK')ru2,,82lp,P) correspond« to RR* or there is only one state
p" < F and (KiMKMp'D^lfl'.^P.F') corresportd« to RR', and
(Ku(K,-{p'}),2u2',J4,p)FuF,) corresponds to R+R' where

»l(q,f) -P if 8(qlf) i F
otherwise (Vq i (K-F))

82(q.f) •P'
= 8(q.f)

if 8(q,f) i F
otherwise (Vq ((K-F)) (Vf € 2)

- 8'(q,f) (Vq (K') (Vf < 2')
83(p")f)
83(q)f)

- «'(p'.f)
- 8(q(f)
- 8,(q,f)

(Vf < 2')
(Vq (K)(Vf i 2)
(Vq < (K'-{p'})) (Vf i T)

84(p,f)
84(q,f)

- 8'(p',f)
- 8(q,f)
- 8'(q)f)

(Vf i T)
(Vq < K) (Vf « 2)
(Vq < (K'-Ip'})) (Vf (2')

Any arguments for which Jg. 83, or 84 are undefined are dead.

 Janafaia i--^.jgiagäa> ^_ 1 j bi

APPENDIX 107

l.«mma 3.1.6: If R* is a restricted regular expression such that R and the
corresponding finite automaton (K.I.S.p.F) satisfy properties 3.1.1 to 3.\A
then the finite automaton corresponding to R* is (K-F,I(8',p,{p)) where

«'(q.f) - p
- B(q,f)

if «(q.fi < F
otherwise (Vq < (K-F))

and properties 3.1.1 to 3.1.5 are satisfied

Proof: By the definition of a restricted regular expression, R is neither

initial nor final loop. Thus, by property 3.1.1 (Vq < F) (Vf (J) «(q,f) is

dead and by property 3.1.4 p isn't in F. As shown in chapter III, (Vq (F)

(Vf (2) 8'(q,0 - {«(p,f),i(q,f)}. But «(q,f) is a dead state and entering such

a state will never result in acceptance of the string. Therefore, SW) -

8(p,f) and a and p' an equivalent and since both p' and q are final states,

they cv\ be combined, leaving p' as the only final state. Since R isn't

initial loop, by property 3.1.4 (Vq i K) (Vf i I) 8(q,f) H p. Thus, p can be

deleted and p' renamed to be p. Properties 3.1.1 and 3.1.4 are true for

R* since it is both initial and final loop. Property 3.1.2 is true since

(Vf (1) if (3q (K-F) «(q,f) i F then (Vq' t q) «'(q'.O ■ «(q'.O is dead.

Otherwise (Vq.q' (K-F) either «'(q,f) - a(q)f) or aXq'.f) - «(qV) is dead.

Since property 3.1.3 is true for R (3f (2) 8(p,f) isn't a dead state. Either

BXp.f) - p or 8'(p,f) - «(p,f), so «'(p,f) isn't dead and property 3.1.3 is true

for R*. Property 3.1.5 is trivially true since p is the only final state.

I,«mma 3.1.7: Let RR' be a restricted regular expression such that R and the
corresponding finite automaton (K.J.B.p.F) and R' and its corresponding
finite automaton (K'.SXp'.P) satisfy properties 3.1.1 to 3.1.5. Let M be
the finite automaton corresponding to RR'. If R is final loop, then M -
(Ku(K'-{p'}),2uI',«",p,F') and F - {pH} where

 , : ._ : iii

APPENDIX 108

8"(pM,f) -«'(p'.f)
a"(q,f) - »(q,f)

- IW)

(Vf (T)
(Vq < K){Vf < I)
(Vq < (K'-fp'})) (Vf (T)

.jnd Hq.f) is a dead state for all other (q.f) pairs. Otherwise, M
({K-F)uKMur,«",p,P) where

«"(q.O P'
l(q,f)
«'(q.f)

if i(q,f) < F
otherwise (Vq < (K-F)) (Vf (I)
(Vq < IC) (Vf < Z')

and 8"(a,f) is a dead state for all other (q.f) pairs, In either case, RR' and
M satisfy properties 3.1.1 to 3.1.5.

Proof: By the definition of a restricted regular expression, t and T are

disjoint. Therefore, as shown in chapter III, (Vq < K) (Vf i I) a"(q,f) -

a(q,f), (Vq i F) (Vf < T) «"(q,f) - «'(p'.f), (Vq i IT) (Vf (D «"(q.f) - W),

and i"(q,f) is a dead state for all other (q,f) pairs. If R isn't final loop,

then by property 3.1.1 (Vq < F) (Vf < Z) «(q,f) is dead. Thus, (Vq < F)

(Vf i ZuZ') «"(q,f) - «"(p'.f) and q is a final state iff p' is. Therefore, F can

be deleted and (Vq' < (K-F)) (Vf < Z) if «(q'.f) < F then «"(q'.f) - p'. If R is

final loop, then R' can't be initial loop. By property 3.1.4 (Vq < K')

(Vf (Z') J'(q,f) »< p' «nd p' isn't in F'. Therefore, F" - F* and (Vq < KuK')

(Vf i ZuZ') fi"(q,f) t p' so p' can be deleted. Property 3.1.1 holds since if

R' is final loop, then so is RR'. Otherwise, by property 3.1.1 (Vq < F')

(Vf < Z') «'(q,f) - «"(q.f) is dead. Also, (Vq i F') (Vf i I) «"(q,f) is dead.

Property 3.1.2 must hold since if R is final loop it must be simple fina1 loop

and by property 3.1.5 there is only one state p" in F. (Vf < Z)

(Vq ((K'-{p'})) «"(q.f) is dead and (Vq.q' (K) either «"(q,f) - «(q.f) or

APPENOIX

«'V.O - 6{q\f) is dead. (Vg (T>) (va f |f.fn..i> .,./„ ^ B * MTq * K {P /' • (g.q) is dead. If a'V'tf) -
••<P-..) *„•, de4d, ,„.„ (yq („.,„.„ nqs) . ,,(((|g) , ^^ ^^

(Vc-.q' < KMp'i, either ,",<„, . ,.(q,g) js dMd „ e|se ^ _ ^^ ^

•• If R isn't «„., l00p, lhen w<1) ^^^ t.w) ,s ^ ^

<Vq,,' < K-F, .„„„ ,(q,0 i, dMd in w(i.ch ^^ ^ n<].() |(^ ^

rw). iw,,) or eis. nq,„. ,„,„, u^,,, (Vf, r) (yq (K_F) #,w)

" -..d .„d ,yw. , K, either ,"„,,, . ,,,,„ „ d„d „ ^ ^ _

•W) is deed pr„p.r,y 3,3 ho|ds since ^^ ^ _ ^ ^ ^^ _

«(P,f). By property 3,.3, ,3, < J, ,W) ,„,, dead |(R . .^ ^ ^

so is RR- Otherwi,., by property 3.1.-! p isr,t in F and (Vq < K) (y((^

•W)- P. s™ (yd<K-, <yf<r) ,,„,„, p| (y((Jur) ^^^

•"(9.0 f P. ThlB, proper,y 3, „ ^ (or ^ I(RR, ^ ^^ ^^ ^

th.n so is R- ,„d there ceo only be one stete in P.

t-QTnmn 3.18- I At K-ID* U- ...

corresponding lie u^ ^^(^^'n"^8^0" ^ thaf R ^ **
finite auto Jon <*mZ^ZX^ f^ 3 iTTr.?8

automaton corresponding to R+R<((M^^.j'S^ ^^t^6 f,mte

«"(p.f)
»"(q,f)

«'(p'.f)
«(q.O
«'(q.f)

(Vf (2')
(Vq (K) (Vf < 2)
(Vq < (K'-{p'})) (Vf r !•)

and »"(q,f) |s a dead state for a|| other ^

109

to 3.1.5. y properties 3.1.1

"root, Neither R nor R' ere initial loop, so by „roperty 3.M (V, < K,

W < l> »(«.» , p end (*,■, K-) ,V, , r, ,,„.„ , p, There(ore| both p

-n- P- cen be deleted. Also, p ien't in F end p- isn't in F- end ther.tor. p"

APPENDIX
110

isn't in F". By the definition of a restricted regular expression, I and 1'

are disjoint. Thus, as shown in chapter III. (Vf (I) I'W) - a(p.f) and

(Vg i T) «"(p-.g) - BV,g). Since p was deleted, p" can be renamed to be

p. Property 3.1.4 holds since by the definition of restricted regular

expression, neither R nor R' is initial loop and by property 3.1.4,

(Vq < KIHKMP'}» (Vf (luD &»"(q,f) ' P- P^Perty 311 holds SinCe if

e.ther R or R' is final loop, then so is R+R'. Otherwise, by property 3.1.1

(Vq < F) (Vf (I) 6"(q,f) - 8(q,f) is dead. Likewise, (Vq < P) (Vf < 2')

8"(q,f) - «'(q,f) is dead. Property 3.1.2 holds since (Vf i I) (Vq < K') 8"(q,f)

is dead and (Vq' < K) «"(q',f) - WA (Vq.q' < Kü(IO-{p'})) either «"(q.f) or

8"(q'.f) is dead. Also, (Vg i T) (Vq i K-{p)) «H(q«) is dead. If 8"<pj) -

8'(p',g) isn't dead, then (Vq' (K'-{p'}) «"(q'.g) - »'(q'.g) is dead. Otherwise,

B"(P,g) is dead and (Vq,q' (K'-{p'}) either Hq«) - «'(q.g) or 6"(q'.B) -

«'(q'.g) is dead. By property 3.1.3 (3f i K) Hp.O - Kp.f) isn't dead.

Property 3.1.5 holds since R+R' can't be simple final loop.

The proof of theorem 3.1 will now be given.

Proof: The proof is by induction on the complexity of the regular

expression. For the finite automaton ({p,q,q,),{f}.«.P,{q}) where |(p,f) - q

and |(q.f) - 6(q',f) - q', «(q.f) •»<« W,f) are dead and l(p.f) isn't, so

properties 3.1.1, 3.1.2, and 3.1.3 «re true. Also, there is only one final

state which isn't p and there is no state p' such that Kp'.f) - P- Thus,

from lemmas 3.1.6, 3.1.7, and 3.1.8. a finite automaton can be constructed

as indicated in the theorem and the properties hold.

■

' ,■'..-■

APPENDIX 111

Thoorvm 3.5: A shared resource on which Uie allowable sequences of
operations are given by a restricted regular expression is simple serial
with no Z expression from the initial state to a final state.

Lemma 3.5.1: Assume that the synchronization for a resource is expressed by
the restricted regular expression R* and that the synchronization for R
has no Z expression from the initial state p to a final state. Then the
synchronization for R* doesn't have a Z expression from p to p either.

Proof: If there is a Z expression from p to p then by lemma 3.2 there

also is a simple Z expression aj..^ from p to q, bj..,bm from q' to q, and

cj...cn from q' to p such that q^p. Also, by the definition of a simple Z

expression, (Vq") if (3f < 1) such that either (3i, l<i<K) (q",f) - tj, (3i,

l<i<m) (q",f) - bj, or (3i, l<i<n) {q",f) - Cj then q'Vp. Thus, (Vi, ISiSK)

fi^aj) t p and therefore 1\{B^) - J(aj), (Vi, lsi<m) J^bj) t p and therefore

B^bj) - 8(bj), and (Vi, l<i<n) J^Cj) t p and therefore 6|(CJ) - 8(Cj). By

property 4 of theorem 3.1, since R can't be initial loop by the definition of

a restricted regular expression, (Vq i K) (Vf (Z) i(q,f) t p. Thus, J(cn) ^ p

and it must be true that i(cn) < F, Therefore, Bj...Bk, bj.-.b,;,,, and c^.cn

form a Z expr-ssion from p to some element of F in R, a contradiction,

Lemma 3.5.2: Assume that the synchronization for a resource is expressed by
the restricted regular expression R+R' and that neither the
synchronization for. R nor for R' has a Z expression from the Initial state p
or p' respectively to a final state. Then the synchronization for R+R'
doesn't have a Z expression from p to a final state either.

Proof: Assume that there is a Z expression u - (p>g|Kpitg2^"^n-ll'n^ ^

from q to pn, and y from q to q' < (F ü F') in R+R'. By the definition of a

restricted regular expression, R+R' can't be initial loop and by property

3.1.4 (Vq" < K u (K'-{p'})) (Vf < S U T) «4(q",f) H p. Let Kl - K-{p) and

APPENDIX 112

K2 - K'-IP'}. Thus, p^ < Kj or p^ i K2. Assume that pj < Kj. By the

definition of «4l (Vi, ISiSn) pj i K^ If q < K2, then {V(q,,,f) in ß) q" (K2

and pn (. K2, a contradiction. Thus, q < Kj and (V(q",f) In ß) q" (Kj and

f < I. Likewise, (V(q",f) in y) q" < Kj, f (Z, and q' (Kj. Since q' is also in

F u F', od, /?, and t forms a Z expression from p to q' (F in R. If pj « Kg,

then gj (J' and JXp'.gj) - pj. Using an argument similar to the one

above, it may be shown that if pj < Kg then u, ß, and 7 form a Z

expression from p' to q' (F' in R'.

Lemma 3.5.3: Assume that the synchronization for a resource is expressed by
the restricted regular expression RR' and that neither the synchronization
for R nor for R' has a Z expression from the initial state p or p'
respectively to a final state. Then the synchronization for RR' doesn't
have a Z expression from p to a final state either.

Proof: There is no arc progression (qot'i)-(Pn-l'V from a 8^e ''O (^

to qn < t'. Otherwise, (3i, 0<i<n) qj < K' and (Vj, i<j<n) qi « K. Thus,

^2^\'f'\+0 " qi+l * K c>r '3^i>fi+l) " ^i+l which contradicts the definition

of $2 and '3- ^ there is an arc progression u =» (qo^l^-^n-l^n^ 'rorn

q0 « K to t;n < K' then (3i, 0<i<n) q| c K' and (Vj, 0<j<i) qs i K. It must also

be true that (Vj, i<j<n) q; (K'. Otherwise, there is an arc progression

from q| i K' to q; i K. Assume there is a Z expression from p to a state

q" < F'. Then there is a simple Z expression aj^.a^ from p to q, bj.-.b^,

from q' to q, and Cj...cn from q' to q". It can't be true that q' « K' and

q' € K. Thus, either q (K' or q' (K.

Case 1: R isn't final loop and Jg 's used. If there is such an <* then qj ■
p'. If q < K' then (3jl, l<jl<k) (3f < I') -M - (p'.f). If q' < K then
(3)2, l<j2<n) OUT) Cj2 - (p',f), It must also be true that
•(Cio-P = Pp ^- If q « K1 and q' i K then (3j, l<jSm) (3f < I') bj -
(p',f), a contradiction of the definition of a Z expression. If q' < K'

APPENDIX 113

then (Vi, ISlSm) if bj - (p",t) then p" (K' and f < T. Also, (Vi, lsi<n)
if Cj - (p",f) then p"< K' and f (T. Thus, a^.-a^ bj-.b^ and
c^-.Cr, form a Z expression from p' to q" in R'. Note that by the
definition of a simple Z expression there is no bj - {p',f>. Similarly,
if q (K and q' i K then aj...Bk,
expression from p to pp in R

bj...bm, and c^-Cß-l ^orm a ^

Case 2: R is simple final loop, ^3 is used, and there is only one state
p" (F. If there is such an u then q^^ » p". If q < K* then <3j3,
l<j3<k) (3f3 (T) a^ - (p".f3>. If q' < K then (3J4, l<j4<n) (3f4 (2')
c.4 - (p",f4). It must also be true that r(p,,f4) - ^(pV^). If q < K'
and q' (K then (3j, l<j<m) (3f < I') bj - (p",f). a contradiction of the
definition of a Z expression. If q' < K, then 8j...ak, b^.-.b^ and
Ci.-.C:/«.! must be a Z expression from p to p" in R. If q < K', then
(p',f)aj3+1..,aK, bi...bm, and c^.c,, form a Z expression from p' to q"
in R'.

The proof of theorem 3.5 will now be given.

Proof: By property 3.1.2, the resource must be simple serial. There

clearly is no Z expression from the initial slate to a final state of a single

operation expression. Thus, from lemmas 3.5.1, 3.5.2, «nd 3.5.3 the

theorem must hold.

.

 , L^. ■ .' äamma. .■AL^-^I

APPENDIX 114

Thaorom 3.7: A simple serial resource wit4' no Z expression from the initial
state to a state q such that either KC operation may be applied at it or
else q is a persistent set entry state c«n be written «s a restricted
regular expression without repeated names.

Definition: The final ttatt* of a simple serial resource as described in the
theorem are the persistent set entry states and the states at which no
operation can be apyiied,

Lamitut 3.7.1: Assume the bynchronization for a finite state resource M with
initial state p has the property that there is an arc progression from
every state to p. Let M' be a resource which differs from M in thai there
is an additional state p' at which no operations can be applied and tho
successor function S' is defined as follows: S^q.t) - p' if S(q,f) - p and
SXq.f) - S(q,f) otherwise. If M is simple serial with no Z expression from p
to p then M' is simple serial with no Z expression from p to p'. Also, if
the synchronization for M' can be expressed with the regular expression
R then the synchronization for M can be expressed with R*. Finally, there
is no persistent set in M1.

Proof: An operation can be applied at a state of M ir it can be applied at

the sanfe state of M*. Thus, M is simple serial iff M" is. Since there is an

arc progression frorti every state of M to p, at least one operation can be

applied at every state of M and therefore also at every state of M* except

for p'. Every arc progression in M to p is an arc progression in M1 to p'.

Hence there can be no persistent set and p' is the only final state. By

theorem 3.1, if the synchronization for M' can be represented by R, then

the synchronization for M can be represented by R*. Finally, assume that

there is a Z expression from p to p' in M*. By the definition of M', this

must also be a Z expression from p to p in M.

Lemma 3.7.2: For a finite state resource with initial state p, if there is an arc
progression from some state q to p but none from another state q' to p
then there can be no arc progression from q' to q, Furthermore, if there
is no Z expression from p to a final state, then every arc progression
from q to q' must contain an arc (p,f).

APPENDIX 115

Proof: If there is an arc progression from q' to q, since there is one from

q to p, there must be an arc progression from q' to p, a contradiction. If

(qOih)-(<ln-l'V is an arc PfWession from q - q^ to q' - qn, then (3kf

0<k<n) there is an arc progression oi from qk to p but there is no arc

progression from qk+1 to p. There must also be an arc progression ß

from qk+1 to some final state qt. Since there is no arc progression from

qk+1 to p, there can be no arc (p.f) in ß and there can be no arc (qf>f) in

oc. If qk t1 p, then (, u, and /? form a Z expression from p to qf, viclating

the assumption. Therefore, q^ - P and there is an arc (P>fk+P in the arc

progression from q to q'.

Lemnia 3.7.3: If there is a Z expression f'om a state p to itself then (Vq) if
there is an arc progression from p to q then there is a Z expression from

P to q

Proof: Since there is a Z expression i.-om p to p, by lemma 3.2 there is

also a simple Z expression from p to p conposed of »re progressions u -

(PO-Si) •(Pm-l.gm) from P - PO t0 some state ^tv $ ' (Vl^-^n-l'V

from a state q0 'o qn) and y from q0 to p such that (Vi, 0<i<n) qj t p, (Vj,

0<jsn) there is no arc (qi.f) in y, (Vk, 0<k<n) there is no arc (qK,f) in U,

there is no arc (p,f) in y, and p t QQ. There are several cases which must

be handled. In each, < represents the empty arc progression.

Case 1: If p - q, then there trivially is a Z expression from p to q.

Case 2: If QK 0<k<n) qk - q, then there are ro arcs (p,f) or (qk,f) in y,
p >< q - qkl p >< q0, and (Vi, 0<i<k<n) p t qj. Thus, «, y, and

(q0<f l^-^k-l^k',orm a Z exPress'on 'rom P to <*•

Case 3: If there is an arc (q.f) in y, then y can be written as «rWh-", (Vi,
0<i<n) qj t p, (Vi, 0<i<n) q-^ q and there is no arc (q^f) in y\ and
there is no arc (q0,t) in u. Thus, oc, ß, and y form a Z expression
from p to q. •

.,.,^.MMJ.lfa.... ., ■■ ^^ , ■.. . ' ■.lMLi^i^.M^..Ut: ^yMJMMMaJJJJaM.^^. ^^.nfca^aMMja.aiaaaa.jiia«^,:.!,-'. aa ^^^««aka^M^ajliiirtaMiii

APPENDIX 116

Ca-te 4; If there is an arc progression u' from qr1 to q which doesn't
contain any arc (p,f) and there is no arc (q.f) in y, then there is no
arc (p,f) or (q.f) in «y, p f< q, (Vi, 0<i<n) q| it p, and there is nn arc
(p,f) in t>c\ Thus, (, y, and ßu' form a Z expression from p to q.

Cat« 5: If there is no such oi' from qn to q, then every arc progression
from p to a which contains an aT (qn,R) must also contain an arc
(p,f). Therefore, there is a'so an arc Progression y' from p to q
which doesn't contain any arc (qn(g). As a result, (Vi, 0<l<n) c.j f* p,
(Vi, 0<i<n) qj / q, (Vi, 0<i<n) there is no arc (qj,f) in u, end there is
no arc (qn,R) in y or y\ Thus, oc, ft, and >>' form a Z •rpression
from p to q.

Lemma 3.7A: Assume the synchronization for a finite state resource M with
initial state p has the property that there are arc progressions from some
of the states to p. Let M' be a resource consisting of those states of M
for which there is an arc progression to p along with all of the arcs which
result in one of these states. Let M" be a resource consisting of the
states of M not in M', a new state p', and the arcs of M not in M' with any
state of M' replaced by p'. There are no states of M" in any arc of M7. M'
is a persistent set with entry state p. W and M" have disjoint sets of
operations and pre simple serial if M is simple serial. If the
synchronization for M' can be expressed with the regula expression P',
the synchronization for M" can be expressed with the regular expression
R", and there is no Z expression from p to a final state, then there io no Z
expression from p to p in M1 or from p' to a final state in M" and the
synchronisation for M can be expressed by R'R".

Proof: By lemma 3.7.2 there can be no »re progression from any staie of

M" to any state of M1 in M. Thus, every arc resulting in a state of M* must

be of the form (q,f) for some state q of M. If (qQiV-^n-l'V is an 8rc

progression from a state qg to p in M, then (Vi, 0<i<r) there is an arc

progression from q, to p. Therefore, qj and (qjifj+i) are in M' and there is

an arc progression from qQ tc p in Kf. Since there is an arc progression

from every state of M1 to p in M, there also is one in M1 and M' is a

persistent set. Since p is the initial state, it must be the entry state and

also the only final state of fvT There is a one-to-one correspondence

a

I

 . ^ ^_— -^""■^a^ . ,

,.—„ — I.,..!-... I T.l

APPENDIA 117

between the arcs of M and those of M7 and M". Therefore, if an operation

is only part of one arc of M, it will be part of either one we of W or one

arc of M". If there is a Z expression from p to p in 1^ therr mutt also

have been one in M and by lemmi 3.7.3 there must have been a Z

expression from p to a final state in M. Assume that u, y, and fi form a Z

expression from p" to a final state in M". The first arc ot must be of

the forji (p'.f) and results in a state q' of MM. This arc must represent

(q,f) in M where q is a state of M5. But then (q.f) is an arc progression

from a state ot M to a date of M" and by lemma 3.7.2 must contain «n arc

(p.g). Thus, q - p and u, y, and ß forms a Z expression from p to a final

state in M. By theorem 3.1 and the fact that every arc (p',f) in M"

represents an arc fn.f) in M, M can be represented by R'R".

nofimtion: The noxt m of a state p, N<p>, is {q | (3f) S(p)f) - q}. The tail i*at*i
of a state p is {q | (Vq1 f N(p» there is an arc progression from q' to q}.
1 he tail arcs of a state p is {(q,f) | q is a tail state of p}.

Lemma 3.7.5: If q is a tail state of some state p and there is an arc progression
/? from q to another sti*e q', then q' is a tail state of p.

Proof: Since q is a tail state of p, for each state p' in N{p> there must be

an arc progression «* from p' to q. But then e^ is an arc progression

from p' to q'.
I

Lemma 3.7.6: If there is no Z expression from a state p to a final state, there
are no arc progressions from p to itself, and there is at tsast one state in
N{p), then there is a unique tail state p' of p such that every «re from p to
a tail state of p other than p' must contain an arc (p'.f).

Proof: Let «/. be an arc progression from p tn a tail state p' of p which

—-^ -l< ■■! "■ ■ mmmmmmmm -...— i^-^m

APPENDIX
118

contains no arc (q.f) for some tail state q. (If there is such a state q, let ot

be the arc progression from p to q instead). Assume that there is an arc

progression from p to a tail state q' H p' of p which contains no arc (p'.f).

Using the same argument as above, it may also be assumed that there is

no arc (q,f) in the arc progression for some tail state q. if there is no

such arc progression, then the proof is done. Either there is In arc

progression ß' from q' to some final state qf * p' which contains m arc

(p'.f) or else there is one from p' to a final state other than q' which

contains no arc (q'.f). Without loss of generality, it may be assumed that

the former is the case. It should be noted that since there is no arc

progression from p to itself, p isn't in N<p) nor tan it be a tail state of

itself. Since there is an arc progress.on from q' to qf> by lemma 3.7.5 qf

must be a tail state of p. If there is an arc progression y from qf to p',

then for each arc (q.f) in y, by lemma 3.7.5, q must be a tail state of p and

it must be true that q H p. Therefore, oc, y, and e form a Z expression

from p to qf. Since there is no such Z expfession, there can be no such y.

Let the last arc of * be (p",f). Since p" isn't a tail state of p there must

be some state q" in N{p) such that there is no arc progression from q" to

P • Let t and ß he the arc progressions from q" to p' and to q'

respectively. For every state q such that (q,g) is an arc in oc there

trivially is an arc progression from q to p". Thus, there can be no arc

(q,h) in y or in fl. Al«, there can be no arc (qf,h) in y since otherwise

there would be an arc progression from qf to p'. It must therefore be

true that oc, y, and flfi form a Z ev-eSsion from p to qf.

Definition: The unique state p' will be called the tail entry Btate of p.

I .;.^. .

APPENDIX 119

Lemma 3.7.7: Assume there is no Z expression from a state p to a final state,
there are no arc progressions from p to itself, and there is at least one
state in Wp). If p' is the tail entry state of p and q isn't a tail state of p
but there is an arc progression u from p to q, then any arc progression ß
from q to a tail state of p must contain an arc (p'.f).

Proof: Since <*/? is an arc progression from p to one of its tail states, by

lemma 3.7.6 either u or ß must contain an arc (p'.f). If (p'.f) I» an arc of

c*, then there is an arc progression from p' to q and by lemma 3.7.5 q

must be a tail state of p, a contradiction.

Ltmmti 3.7.8: Assume there is no Z expression from a state p to a final state,
there are no arc progressions from p to itself, and there is at least one
state in N{p). If p' is the tail entry state of p, then there can be no Z
expression u, y, and fl from p to p' such that no arc (q,f) in *', t, or /? q

is a tail arc.

Proof: There must be an arc progression /3' from p' to a final state. By

lemma 3.7.b, for each arc (q,f) in ß' must be a tail arc of p. Thus, od, %

and ßß' forms a Z expression from p to the final state.

Umma 3.7.9: Assume there is no Z expression from a state p to a final state,
there are no arc progressions from p to itself, and there is at least one
state in Nip). If p' is the tail entry state of p, then there can be no Z
expression *', y, and ß.irom p' to a final state such that every arc (q,f) In

oc\ y, or /? is a tail arc.

Proof: By lemma 3.7.6, there must be an arc progression ot from p to p1

which contains no arc (q,t) for a tail state q of p. Thus, otei1, y, and ß

would form a Z expression from p to the final state.

■

Lemma 3.7.10: If a finite state resource is such that there is no arc resulting in
the initial state p, there is no 7. expression from p to a final state, and
there is at least one tail state of p, Ihen every final state is a tail state of

P-

APPENDIX
120

Proof: 4f there is an arc progression from a persistent set entry state q

to the tail entry state p', then p' must be in the persistent set and there

must be an arc progression from p' to q. Therefore, by lemma 3.7.5 q

must be a tail state of p. Assume that there is a final state p" which isn't

a tail state of p. Let (p.f")/? be an arc progression from p to p" where ß

is from a state q" « N(p) and contains no arc {p.g). Since p" isn't a tail

state of p. (3q' i N(p)) there is no arc progression from q' to p". Let (p.f)

be an arc progression from p to q', * be one from q' to p', and y be one

from q" to p\ There can be no arc (p".g) in , or U or else there would be

an arc progression from p" to p'. If (q.O is in arc in ^ then there can be

no arc (q(g) in u or els» there would be an arc progression from q' to p".

The arc progressions (p.fV, y, and fi therefore form a Z expression from

p to p", a contradiction,

Lemm* 3.7.11: Assume the synchronization for a fi"ite ^f^^'0;^ ^^
initial state p has the property that no arcs resul in P a"dJ^ e 's J
least one tail arc of p. Let M' be a resource con« sting of h«e • »tes o
M which aren't tail states of p, a new final state q. «^ ^y. ^f

(q'f ^
a state q of M' such that if an arc of M* results in a tail state of p in M
h n I? Results in q' in M'. Let - consist of the tail states of M and a

the arcs (q.O for a state q of ' The initial state p is in M*. I there is
no Z exp e ion from p to a final state in M. then every f"«! stete 0 M
Tn MVhere is no Z expression from p'. the tail entry state of Pj* - f'™l
täte in M". and if the synchronization for M can be •^•»•dJ^th

R
ft

and the synchronization for M" can be Z^Vu^JTJ*
synchronization for M can be expressed with R'R . If M i8 simple sens),
then so are M' and M" and the sets of operations are disjoint.

Proofi Since no arc results'In p, p isn't in N(p> and there can be no arc

progression from a state in N{p) to p. Therefore, p isn't a tail state of

itself and must be in M'. By lemmas 3.7.8. 3.7.9. and 3.7.10, if there is no

121

APPENDIX

lon(romp...^.""^,h*neV,,y,'n,',,,,,""",b"

i.ll »late of P »nd IHerelore In M «•"•

. u- to . .1.1. ot W 1" M "'d "^ '" isn„,fcpro6resSionlron.s...oo.M.oas....

progression from . sl.te ol M .0 .

,„.» Using the conslroction Iror» theoren, 3.! .or
„„„in en arc (P.O. Usmg OM .„„ ,„ F pr<Klue.. M
„pression ollhe lor. RR—...-son. ones,...

from..n.M-.F V,-is.on.-.^^PO-. ^

 csof..naM..enalne..so(W.—J—

0„,yonee.o,M,i^.einon!yone.reo.e,lh.^orM.

M „r. ol . stele P. WP), - W; l^.'" iS "i". tM
Deffrti.»: The ^"""''•. "' "„„'e th.t the tail er« ol . .<•'• '

,_ 3.7.12! .e; P --^^r r-r v^I t3
express on from p to a nna. Mpi)« ^Pn+l1' " nA nr

else Aj'cAp and An+1 • Aj.

Proof- Assume that (q,g)< An and (q.g' .

. • n in A (3i. UJ^n) ^'.«^ isn,t in ^^ , i ^ i.n't in A Since (qVVisnt m An,UJ, J
(qig),5n " . t0 a', be the arc progression
Let .be the arc progression from pn+l to q..

i« « Thpre a so musi . .op- and/! be the ere progression fro. Pi to,. There

rot» Pj to 0. »na p u
,rom o w q but there cen be none from p„tl

be an arc progress.on from P, >o 0

10 „• u. ^ be en arc progression from 0 to a «net

Since no arc results in P, there can be no re tp,.
lo".) in, then there is en.-c Pression tromPj

0-or if there is an ere (0,.)-,, .„„.,) In brth -

APPENDIX

and ß or if (q'.f) is in ß then there is an arc progression from pn+1 to p'

or q' to q which is a contradiction. Likewise, if there is an arc (p'.f) in

both * and ^ or if (q'.f) is in /?' then there is an arc progression from Pj

to q to p' or q' to q' which is a contradiction. Finally, since pn+i < N(p),

(3f) S{ptf) - Pn+1- The arc progressions (p.fK, f, and ßfS form a Z

expression from p to a final state, which is a contradiction.

Unma 3.7.13: Let p be a state such that no arcs ^)^^^ ^
expression from p to a final state. For states q,q,q « N(p), if A(q) «q
isn't empty but A(q) n A(q"> is, then A(q') n A(q > is empty.

Proof-. Assume that A(q') n A<q") isn't empty. Then by lemma 3.7.12,

either A(q) n A{q') n A(q"> - A(q) n A(q') or else A<q) n A(q') n A(q") -

A(q') i A(q"), neither of which is empty. (Let prq, P2"«!^ PS"*'"' and

i-n-2). Therefore, A{q) n A{q") isn't empty, a contradiction.

f-mn,Ä 1 7 14- Let D be a state such that no arcs result in p and there is no Z
'^^exp^ion from p to a final state. If ^ Pn < N<p) and A, is as defmed in

lemma 3.7.12, then (3j, l<)<n) An - ^p^ fl WPj).

Proof: A2 - A<Pl) 0 A(p2) so the lemma is true for n-2. Assume that for

some n. n>2, the lemma is true. Thus, (3j, KjSn) An - A^) o Wpj). By

lemma 3.7.12, if Aip^ n A(pn+1) isn't empty, then either An+1 - An -

Mp^nMpj) or else An+1 - M^) n A(pn+1). Likewise, if

MP!) n A<pn+1) is empty, then An+1 is empty «nd An+1-

KPX) n A(pn+1). Thus, the lemma is also true for n+l and by induction

(Vn, l<n) it is true.

Lemrn« 3.7.15: Assume the synchronization for a finite state ^urc^ ^
initial state p has the property that no arcs result in p. there «re no tail

122

in
m I

APPENDIX 123

arcs of p, and there is no Z expression from p to a final state. It may also
be assumed that if for state q there is no arc (q.f) tfvn there Is only one
arc (qV) such that S(q,,f) - q. If there is another arc (q^g) such that
^(q'^g) -q, then ereate a new state p" equivalent to q and let S(q",g) - p".
Select any state p" such that p" i Hp). Let B(p") - {q | q < Nip) and
A(p") n A(q) isn't empty) u {p"}, ({p"} is necessary in case A(p") is
empty). Let fvf be a resource consisting of p, B{p"), any state q' such that
(3q i Bip")) there is an arc progression from q to q', any arc from p to a
state q (Bip"), and any arc (q'.f) such that (3q < B<p")) (q'.f) (A(q). Let MH

be a resource consisting ohf a new state p' and all of the states and arcs
of M which aren't in M" with the exception that every arc (p,f) is replaced
by (p'.f). Either there is only one arc or else there must be at lejist one
in M1 and at least one in M". There is no Z expression from p to a final
state in M' or from p' to a final state in M". If M is simple serial, then so
are M' and M" and M1 and M" are disjoint. Finally, if the synchronization
for K/T can be expressed by R' and the synchronization for M" can be
expressed by R" then the synchronization for M can be expressed by
R'R".

Proof: Since there are no tail arcs of p, the intersection over the states

q « N<p) of A(q) is empty. If p" is the only state in N<p), then there can be

no arc (p",f). Otherwise the arc would be a tail arc of p. Sin^e every arc

(p,f) results in p" and there can only be one arc resulting in p", there is

only one arc. Assume that there is at least two states In N(p>. By lemma

3.7.14, (3q (N<p)) A(p") n A(q) is empty. Thus, there are arcs (p,f) to p" in

M' and (p,g) to q in M". By the definitions of M1 and A(q), for each arc

(q,f) in M7 q is in M". If q«p, then S(q,f) must be in B{p"> and therefore

also in M', Otherwise, (Bq' i B(p")) such that (q,f) c A(q,). Thus there is an

arc progression from q' to q to S(q,f) which therefore must also be in M*,

For each arc (q,f) in M", either q-p' and S(q,f) is in N(p)-B(p") or else

every arc progression from p to q in M starts with an arc (p,g) such that

S(p,g) - q' and q' i N(p>-B(p"). Thus, (q,f) i A(q') arJ there is an arc

progression from q' to S(q,f). Since A(p") n A^') is empty and

■

APPENDIX 124

(Vq" < B(p")) A(p") n Alq") isn't empty, by lemma 3.7.13, A{q>) n A(q,'> is

empty. Thus there can be no arc progressrjn from q" to q. If there is an

arc progression from q" to S(q,f), then any arc (S(q,f),g) would be in both

A^') and A(q"), a contradiction. Thus, either there is no arc progression

from q" to S(q,f) or else there is no arc (S(q,f))g). But in the latter case,

only one arc can result in S(q,f) and that is (q,f). Since there is no arc

progression from q" to q, there can be none fron q" to S(q,f). Using the

construction of theorem 3.1, the synchronization can be expressed as

R'+R" and since each arc of M is either in M or M", if M is simple serial

then so are M' and M" and R' and R" must be disjoint. Jf for a state q of

M' or M" there is no arc (q,f) then there can be no ere (q,f) in M.

Likewise, every persistent set of M" and M" must be « persistent set in M

with the same entry states. Thus, every final state of W and M" must be

a final state of M and every Z expression in M' or M" from p or p'

respectively to a final state must be a Z expression from p to the same

final state in M.

The proof of theorem 3.7 will now be given.

Proof: For a set of synchronization relationships M with initial state p

there are five possibilities.

1. There is an arc progression from every state to p. In this case, the
set of states form a persistent set with p as the only entry state.
By lemma 3.7.1, the resource K/T as described in that lemma must be
simple serial with no Z expression from p to a final state. Also, if
the synchronization for M* can be expressed with the regular
expression R, the the synchronization for M can be expressed with
the regular expression R*, Finally, there are no persistent sets in
M' and p isn't the successor of any «re in M1 so R can't be either
final nor initial loop.

•

APPENDIX

2 TU

roc y".criron,?"fion for VT and M" .. u " f,na, sfate in M" ff

esso' ^ ^ -'" ^ ■« «■ iÄ.,"C'00p 'nd "■
o '«• « single arc fn f > »

can be expressed by PVR" el, men ihe «ynchronizafin» ^

This procedure of alt

~v -..„ sinc;re r,
s,'oc',ro*8,ion re",io"s',ips m-

■ nd 5' 'he "'"»"er of arcs in M- lnri „.

or arcs m M. F.nally, after c^» i •

°'*°' -« applies ,„ the ,.„,

125

5.

5- .JHITY CLASSIFICATION OF THIS PAGE fUhen Del« Enfrad)
1

ll
REPORT DOCUMcNTA i ION PAGE

FOSRJ- TIN 7ti- 0^ b 3/
2. GOVT ACCESSION NO.

4. TITLE ("a/id Su6(/rle)
■■ IN« I' ,

n SYNCHRONIZATION OF FINITE STATE SHARED RESOURCE^ ' /'interim JIZ ^)

HEAD INSTKUCTIONS
BEFORE COMPLFTING FORM

3- RECIPIENT-S CATALÜ.. NUMBER

5. TYPE OK REPORT & PERIOD COVERED

• interim </ / ' . .
A "- -r. ,/ 7 /
8. PERFORMING ORG.^EPoSTflu MBER

7. AUTHOR^

Edward A./Schneider |

,o>-
9. PERFORMING ORGANIZATION NAME AND ADDRESS

Carnegie-Mellon University
Computer Science Dept.
Pittsburgh, PA 15213

II. CONTROLLING OFFICE NAME AND ADDRESS

Defense Advanced Research P -ojects Agency
1400 Wilson Blvd
Arlington. VA 22209

r-L F4462je)'-73-C-O074j, {

10. PROGRAM ELEMENT, PROJECT TASK
AREA 4 WORK UNIT NUMBERS

_51101D
A0 2U66

ü, REPORT DATE

(ijj MardMM76

U. MONITORING AGENCY NAME 4 ADDR ESSr" d*//eren(from Controlling Olticej

Air Force Office of Scientific Research (MM)
Boiling AFB, DC 20332

IS. DISTRIBUTION STi"EMEU J (ol this Report)

''J)I33P.
'&

13. NUMBER OF PAGES

130
IS. SfiCURITY CLASS, (ol this report)

UNCLASSIFIED

IS«. DECLASSIFICATION DOWNGRADING
SCHEDULE

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20. II different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if neces sary and identify by block number)

I. «QC-WrT fContlnue on reverse side II necessary and Identify by block number) ~"

The problem of synchronizing a set of operations defined on a shared resource

is studied. It is assumed that the decision as to which operations may be executed at

some given time is dependent only on the sequence in which the operations have

already executed. Equivalence classes of these sequences, called states, can then be

DO t JAN 73 1473 EDITION Or 1 NOV 65 IS OBSO LETE //f\<k \'? I v UNCLASSIFIED Lt U Q O O j, ?
SECURITY CLASSIFICATION OF THIS PAGE okcn Data Entered) if

By ' ■--: •

it i *™i™**™mmmammmwwmmimammifmmeim0Bt£t

PRECEDINS PAGE BLANK-HOT fILMSD

^OL^UJl-l ii-U
/ f

S'"CUS1TY CLASSIFICATION OF THIS PAGEfH7-wi Dmlm "nlBtad)

used to define synchronizafion. A restriction is made such that only those resources

I
for which the synchronizafion can be expressed using a finite number of states will be

studied. The states along with a successor function, which is defined for a

state-operation pair if the operation may start execution when the resource is in that

state, form what are called synchronization relationships.

A distinction is made between resources on which only one process may execute

an operation at a time, called serial resources, and resources on which several

processes may execute operations in parallel, cal'ed concurrent rc'ources. To handle

concurrent resources, the states must be modified so that they correspond to

equivalence classes of sequences of perilogues instead of operations. A periiogue is

either the start or the finish of the execution of some operation.

Several variations of regular expressions are presented with which the

synchronization for a shared resource might be exp-essed. Also, a method which can

be used to implement the synchronization relationships is given. This implementation

has a high overhead so several possible simpiif-cations a-e shov/h Each vacation of

regular expressions and each ■: -pi f cation of the imp.erentaüon is shown to

correspond to some restricted class of the syncnronizatrcn relationships. The set of

synchronization problems which can be solved using one implementation or notation

which can't be solved using some other implementation or notation can be found by

comparing the corresponding classes.

UNCLASSIFIED

SECURITY CLASSIFICATION O' THIS PAGEfVVhen
-ÄKSV -ft "wpf r-mtm -«

i^^fl^aa*"aaa'1 iima

Data Entared) |

ar-K . „-,__..,-. ~ -' -^ I 1

